• Title/Summary/Keyword: Mini-implants

Search Result 79, Processing Time 0.019 seconds

Removal torque of sandblasted large grit, acid etched treated mini-implant (Sandblasted large grit, acid etched 표면처리에 따른 교정용 미니 임플랜트의 제거회전력에 관한 연구)

  • Oh, Nam-Hee;Kim, Seong-Hun;Kook, Yoon-Ah;Lee, Keun-Hye;Kang, Yoon-Goo;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.324-330
    • /
    • 2006
  • Objective: The purposes of this study were to evaluate the differences between sand blasted, large grit and acid-etched (SLA) treated mini-implants and smooth surface orthodontic mini-implants in relation to the removal torque as well as the histologic analysis. Methods: Custom-made, screw-shaped, titanium implants with a length of 9.5 mm and an outer diameter of 1.8 mm were divided into 2 groups; the SLA group (20 SLA treated orthodontic mini-implants) and the smooth surface group (20 smooth surface mini-implants), and placed In the tibia metaphysis of 10 rabbits. Each rabbit had 4 mini-implants placed, 2 in each tibia. The right tibia were implanted with the SLA group mini-implants and the left tibia had the smooth group mini-implants placed. Each mini-implant group were immediately applied with a continuous traction force of 150 g using a Ni-Ti coil spring. The rabbits were sacrificed 6 weeks post-surgically. Subsequently, the legs were stabilized, the Ni-Ti coil springs were removed and the mini-implants were removed under reverse torque rotation with a digital torque gauge. Results: 6 weeks after placement, the SIA group presented a higher mean removal torque value (8.29 Ncm) than the smooth group (3.34 Ncm) and histologic analysis revealed a higher new bone formation aspect along the screw in the SLA group. Conclusion: Results of this study indicates that SLA treated mini-implants may endure higher orthodontic forces without loosening.

Geometrical design characteristics of orthodontic mini-implants predicting maximum insertion torque

  • Katic, Visnja;Kamenar, Ervin;Blazevic, David;Spalj, Stjepan
    • The korean journal of orthodontics
    • /
    • v.44 no.4
    • /
    • pp.177-183
    • /
    • 2014
  • Objective: To determine the unique contribution of geometrical design characteristics of orthodontic mini-implants on maximum insertion torque while controlling for the influence of cortical bone thickness. Methods: Total number of 100 cylindrical orthodontic mini-implants was used. Geometrical design characteristics of ten specimens of ten types of cylindrical self-drilling orthodontic mini-implants (Ortho Easy$^{(R)}$, Aarhus, and Dual Top$^{TM}$) with diameters ranging from 1.4 to 2.0 mm and lengths of 6 and 8 mm were measured. Maximum insertion torque was recorded during manual insertion of mini-implants into bone samples. Cortical bone thickness was measured. Retrieved data were analyzed in a multiple regression model. Results: Significant predictors for higher maximum insertion torque included larger outer diameter of implant, higher lead angle of thread, and thicker cortical bone, and their unique contribution to maximum insertion torque was 12.3%, 10.7%, and 24.7%, respectively. Conclusions: The maximum insertion torque values are best controlled by choosing an implant diameter and lead angle according to the assessed thickness of cortical bone.

Analysis of time to failure of orthodontic mini-implants after insertion or loading

  • Jeong, Jong-Wha;Kim, Jong-Wan;Lee, Nam-Ki;Kim, Young-Kyun;Lee, Jong-Ho;Kim, Tae-Woo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.5
    • /
    • pp.240-245
    • /
    • 2015
  • Objectives: This study was performed to evaluate patterns of failure time after insertion, failure rate according to loading time after insertion, and the patterns of failure after loading. Materials and Methods: A total of 331 mini-implants were classified into the non-failure group (NFG) and failure group (FG), which was divided into failed group before loading (FGB) and failed group after loading (FGA). Orthodontic force was applied to both the NFG and FGA. Failed mini-implants after insertion, ratio of FGA to NFG according to loading time after insertion, and failed mini-implants according to failed time after loading were analyzed. Results: Percentages of failed mini-implants after insertion were 15.79%, 36.84%, 12.28%, and 10.53% at 4, 8, 12, and 16 weeks, respectively. Mini-implant failure demonstrated a peak from 4 to 5 weeks after insertion. The failure rates according to loading time after insertion were 13.56%, 8.97%, 11.32%, and 5.00% at 4, 8, 12, and 16 weeks, respectively. Percentages of failed mini-implants after loading were 13.79%, 24.14%, 20.69%, and 6.9% at 4, 8, 12, and 16 weeks, respectively. Conclusion: Mini-implant stability is typically acquired 12 to 16 weeks after insertion, and immediate loading can cause failure of the mini-implant. Failure after loading was observed during the first 12 weeks.

Factors Associated with the Stability of Two-part Mini-implants for Intermaxillary Fixation

  • Kim, Seong-Hun;Seo, Woon-Kyung;Lee, Won;Kim, In-Soo;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • Journal of Korean Dental Science
    • /
    • v.2 no.2
    • /
    • pp.24-30
    • /
    • 2009
  • Two component orthodontic C-implants have been introduced as intermaxillary fixation (IMF) screws in cases of periodontal problems with bone loss, severely damaged teeth, or short roots. This retrospective research sought to investigate the complications and risk factors associated with the failure of two-part C-implants for IMF cases and to show the possible indications compared to one-component mini-implants. The study sample consisted of 46 randomly selected patients who had a total of 203 implants. Pearson chi-square tests of independence were used to test for associations among categorical variables. At least 19 of the total 203 implants failed (9.3%). There was no significant difference in implant failure due to gender, oral hygiene, and placement, although a significant difference due to soft tissue characteristics and root contact was observed. The two-component design of the mini-implant is reliable for difficult IMF cases. Note, however, that the factors influencing implant failure were found to be age, root damage, and condition of soft tissues.

  • PDF

Clinical study on success rate of microscrew implants for orthodontic anchorage (교정치료 고정원으로서 Microscrew implants의 성공률에 대한 임상적 연구)

  • Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.151-156
    • /
    • 2003
  • To provide some guideline for microscrew implants, 73 patients that received a total of 180 mini- or microscrew implants were scrutinized. The overall success rate was $93.3\%$ (168 among 180 mini- or microscrew implants) and the mean period of utilization was 15.8 months. Microscrew implants in the UB group (maxillary buccal area) succeeded at a rate of $94.6\%$ (87 among 92), mini- or microscrew implants in the LB group (mandibular buccal area) succeeded $96.6\%$ of the time (56 out of 58), while microscrew implants in the UP group (maxillary palatal area) had a $100\%$ success rate (11 out of 11), and mini- or microscrew implants in the LR group (retromolar area) succeeded in $73.7\%$ of cases (14 among 19). This study might indicate that microscrew implants can be used successfully as orthodontic anchorage in daily orthodontic practice.

Influence of surface treatment on the insertion pattern of self-drilling orthodontic mini-implants (표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향)

  • Kim, Sang-Cheol;Kim, Ho-Young;Lee, Sang-Jae;Kim, Cheol-Moon
    • The korean journal of orthodontics
    • /
    • v.41 no.4
    • /
    • pp.268-279
    • /
    • 2011
  • Objective: The purpose of this study was to compare self-drilling orthodontic mini-implants of different surfaces, namely, machined (untreated), etched (acid-etched), RBM (treated with resorbable blasting media) and hybrid (RBM + machined), with respect to the following criteria: physical appearance of the surface, measurement of surface roughness, and insertion pattern. Methods: Self-drilling orthodontic mini-implants (Osstem implant, Seoul, Korea) with the abovementioned surfaces were obtained. Surface roughness was measured by using a scanning electron microscope and surface-roughness-testing machine, and torque patterns and vertical loadings were measured during continuous insertion of mini-implants into artificial bone (polyurethane foam) by using a torque tester of the driving-motor type (speed, 12 rpm). Results: The mini-implants with the RBM, hybrid, and acid-etched surfaces had slightly increased maximum insertion torque at the final stage ($p$ < 0.05). Implants with the RBM surface had the highest vertical load for insertion ($p$ < 0.05). Testing for surface roughness revealed that the implants with the RBM and hybrid surfaces had higher Ra values than the others ($p$ < 0.05). Scanning electron microscopy showed that the implants with the RBM surface had the roughest surface. Conclusions: Surface-treated, self-drilling orthodontic mini-implants may be clinically acceptable, if controlled appropriately.

Peri-implant crevicular fluid levels of cathepsin-K, RANKL, and OPG around standard, short, and mini dental implants after prosthodontic loading

  • Alan, Raif;Marakoglu, Ismail;Haliloglu, Seyfullah
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.5
    • /
    • pp.169-177
    • /
    • 2015
  • Purpose: Despite the high success rates of endosseous dental implants, their placement is restricted according to the height and volume of bone available. The use of short or mini dental implants could be one way to overcome this limitation. Thus, this study aimed to compare standard, short, and mini dental implants with regard to associated clinical parameters and peri-implant crevicular fluid (PICF) levels of cathepsin-K (CTSK), RANK ligand (RANKL), and osteoprotegerin (OPG), after prosthodontic loading. Methods: A total of 78 non-submerged implants (Euroteknika, $Aesthetica^{+2}$, Sallanches, France) were installed in 30 subjects (13 male, 17 female; range, 26-62 years) who visited the clinic of the Periodontology Department, Faculty of Dentistry, Selcuk University. Sampling and measurements were performed on the loading date (baseline) and 2, 14, and 90 days after loading. Assessment of the peri-implant status for the implant sites was performed using the pocket probing depth (PPD), modified plaque index, modified gingival index, modified sulcular bleeding index, and radiographic signs of bone loss. PICF samples collected from each implant were evaluated for CTSK, RANKL, and OPG levels using the ELISA method. Keratinized tissue and marginal bone loss (MBL) were also noted. Results: Clinical parameters statistically significantly increased in each group but did not show statistical differences between groups without PPD. Although implant groups showed a higher MBL in the upper jaw, only the standard dental group demonstrated a statistically significant difference. At 90 days, the OPG:sRANKL ratio and total amounts of CTSK for each group did not differ from baseline. Conclusions: Within the limitations of this study, both short and mini dental implants were achieving the same outcomes as the standard dental implants in the early period after loading.

Mandibular second and third molar protraction with orthodontic mini-implants: case report (교정용 미니임플란트를 이용한 하악 제2, 3대구치의 전방이동 : 증례보고)

  • Choi, Sung-Kwon;Kang, Kyung-Hwa
    • The Journal of the Korean dental association
    • /
    • v.57 no.11
    • /
    • pp.654-663
    • /
    • 2019
  • This case report describes the management of a 30-year-old woman with hopeless mandibular first molars and right maxillary second premolar. The treatment plan included mandibular second and third molar protraction after extraction of mandibular first molars. Mini-implants were placed between roots of first and second premolar. Sliding mechanics with lever arm was used to prevent inclination of molars. A good functional occlusion was achieved in 38 months without clinically significant side effects. Most of the extraction space of mandibular first molar was closed by protraction of second and third molars. The skeletal Class II pattern was improved by counterclockwise rotation of mandible through reduction of wedge effect. Mandibular molar protraction with orthodontic mini-implants in adequate cases would be a great alternative to prosthetic implant and reduce the financial and surgical burden of patients.

  • PDF

Maxillary space closure using a digital manufactured Mesialslider in a single appointment workflow

  • Wilhelmy, Lynn;Willmann, Jan H.;Tarraf, Nour Eldin;Wilmes, Benedict;Drescher, Dieter
    • The korean journal of orthodontics
    • /
    • v.52 no.3
    • /
    • pp.236-245
    • /
    • 2022
  • New digital technologies, many involving three-dimensional printing, bring benefits for clinical applications. This article reports on the clinical procedure and fabrication of a skeletally anchored mesialization appliance (Mesialslider) using computer-aided design/computer-aided manufacturing (CAD/CAM) for space closure of a congenitally missing lateral incisor in a 12-year-old female patient. The insertion of the mini-implants and appliance was performed in a single appointment. Bodily movement of the molars was achieved using the Mesialslider. Anchorage loss, such as deviation of the anterior midline or palatal tilting of the anterior teeth, was completely avoided. CAD/CAM facilitates safe and precise insertion of mini-implants. Further, mini-implants can improve patient comfort by reducing the number of office visits and eliminating the need for orthodontic bands and physical impressions.