DOI QR코드

DOI QR Code

Influence of surface treatment on the insertion pattern of self-drilling orthodontic mini-implants

표면처리가 교정용 미니 임플랜트의 식립수직력과 토크에 미치는 영향

  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University, Wonkwang Dental Research Institute) ;
  • Kim, Ho-Young (Department of Orthodontics, School of Dentistry, Wonkwang University, Wonkwang Dental Research Institute) ;
  • Lee, Sang-Jae (Department of Orthodontics, School of Dentistry, Wonkwang University, Wonkwang Dental Research Institute) ;
  • Kim, Cheol-Moon (Department of Orthodontics, School of Dentistry, Wonkwang University, Wonkwang Dental Research Institute)
  • 김상철 (원광대학교 치과대학 치과교정학교실, 원광치의학연구소) ;
  • 김호영 (원광대학교 치과대학 치과교정학교실, 원광치의학연구소) ;
  • 이상재 (원광대학교 치과대학 치과교정학교실, 원광치의학연구소) ;
  • 김철문 (원광대학교 치과대학 치과교정학교실, 원광치의학연구소)
  • Received : 2011.04.14
  • Accepted : 2011.06.30
  • Published : 2011.08.30

Abstract

Objective: The purpose of this study was to compare self-drilling orthodontic mini-implants of different surfaces, namely, machined (untreated), etched (acid-etched), RBM (treated with resorbable blasting media) and hybrid (RBM + machined), with respect to the following criteria: physical appearance of the surface, measurement of surface roughness, and insertion pattern. Methods: Self-drilling orthodontic mini-implants (Osstem implant, Seoul, Korea) with the abovementioned surfaces were obtained. Surface roughness was measured by using a scanning electron microscope and surface-roughness-testing machine, and torque patterns and vertical loadings were measured during continuous insertion of mini-implants into artificial bone (polyurethane foam) by using a torque tester of the driving-motor type (speed, 12 rpm). Results: The mini-implants with the RBM, hybrid, and acid-etched surfaces had slightly increased maximum insertion torque at the final stage ($p$ < 0.05). Implants with the RBM surface had the highest vertical load for insertion ($p$ < 0.05). Testing for surface roughness revealed that the implants with the RBM and hybrid surfaces had higher Ra values than the others ($p$ < 0.05). Scanning electron microscopy showed that the implants with the RBM surface had the roughest surface. Conclusions: Surface-treated, self-drilling orthodontic mini-implants may be clinically acceptable, if controlled appropriately.

본 연구의 목적은 유지력을 높이기 위하여 교정용 미니 임플랜트에 표면처리를 시행하되 식립 과정의 용이성에 영향을 주지 않는 표면처리 방법을 찾기 위함이다. 교정용 미니 임플랜트를 etching, resorbable blasting media (RBM), 상부 나사산 부위만 RBM 처리를 한 hybrid 등의 3가지 방법으로 표면처리한 후 machined (표면 미처리)군과 비교하였다. 주사전자현미경과 표면 거칠기 측정기로 표면 거칠기를 비교하였으며, driving torque tester를 이용해 실험용 인공골에 교정용 미니 임플랜트를 식립하여, 식립 토크(rotational torque)와 수직력(vertical loading)의 식립 패턴을 비교하였다. Machined surface군과 비교하여 acid etching군에서는 표면 거칠기(Ra 값)가 크지 않았으나 ($p$ > 0.05), RBM군이나 hybrid군에서 표면 거칠기(Ra 값)가 유의하게 컸다 ($p$ < 0.05). 최종 식립 토크는 모든 표면처리군에서 machined군보다 컸다 ($p$ < 0.05). 최대 식립수직력은 hybrid군이 machined군이나 etched군보다 유의하게 작았으며 ($p$ < 0.05), RBM군이 가장 컸다 ($p$ < 0.05). 교정용 미니 임플랜트의 유지력을 높이기 위하여 보철용 임플랜트와 같은 방법으로 전면 표면처리를 하면 self drilling type 고유의 골 삭제기능이 저하될 수 있다. 그러나 cutting edge 일정 부위를 제외하며 적절하게 조절된 표면처리를 하면 골 삭제 능력의 큰 저하 없이 용이한 식립이 가능할 것으로 보인다.

Keywords

References

  1. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997;31:763-7.
  2. Chen Y, Shin HI, Kyung HM. Biomechanical and histological comparison of self-drilling and self-tapping orthodontic microimplants in dogs. Am J Orthod Dentofacial Orthop 2008;133:44-50. https://doi.org/10.1016/j.ajodo.2007.01.023
  3. Chen Y, Kyung HM, Zhao WT, Yu WJ. Critical factors for the success of orthodontic mini-implants: a systematic review. Am J Orthod Dentofacial Orthop 2009;135:284-91. https://doi.org/10.1016/j.ajodo.2007.08.017
  4. Crismani AG, Bertl MH, Celar AG, Bantleon HP, Burstone CJ. Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Denofacial Orthop 2010;137:108-13. https://doi.org/10.1016/j.ajodo.2008.01.027
  5. Park JS, Yu W, Kyung HM, Kwon OW. Finite element analysis of cortical bone strain induced by self-drilling placement of orthodontic microimplant. Korean J Orthod 200939:203-12. https://doi.org/10.4041/kjod.2009.39.4.203
  6. Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofacial Orthop 2007;131(4 Suppl):S43-51. https://doi.org/10.1016/j.ajodo.2006.04.027
  7. Kuroda S, Yamada K, Deguchi T, Hashimoto T, Kyung HM, Takano-Yamamoto T. Root proximity is a major factor for screw failure in orthodontic anchorage. Am J Orthod Dentofacial Orthop 2007;131(4 Suppl):S68-73. https://doi.org/10.1016/j.ajodo.2006.06.017
  8. Lee YK, Kim JW, Baek SH, Kim TW, Chang YI. Root and bone response to the proximity of a mini-implant under orthodontic loading. Angle Orthod 2010;80:452-8. https://doi.org/10.2319/070209-369.1
  9. Poggio PM, Incorvati C, Velo S, Carano A. "Safe zones": a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006;76:191-7.
  10. Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod 2008;78:234-40. https://doi.org/10.2319/121206-507.1
  11. Kim JW, Baek SH, Kim TW, Chang YI. Comparison of stability between cylindrical and conical type mini-implants. Mechanical and histological properties. Angle Orthod 2008;78:692-8. https://doi.org/10.2319/0003-3219(2008)078[0692:COSBCA]2.0.CO;2
  12. Cho IS. The initial stability of mini-implants according to surface treatment method (thesis). Seoul: Seoul National University, 2008.
  13. Kim SH, Lee SJ, Cho IS, Kim SK, Kim TW. Rotational resistance of surface-treated mini-implants. Angle Orthod 2009;79:899-907. https://doi.org/10.2319/090608-466.1
  14. Mo SS, Kim SH, Kook YA, Jeong DM, Chung KR, Nelson G. Resistance to immediate orthodontic loading of surfacetreated mini-implants. Angle Orthod 2010;80:123-9. https://doi.org/10.2319/030309-123.1
  15. Kasemo B, Lausmaa J. Aspects of surface physics on titanium implants. Swed Dent J Suppl 1985;28:19-36.
  16. Chehroudi B, Gould TR, Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res 1990;24:1203-19. https://doi.org/10.1002/jbm.820240906
  17. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  18. Conchran DL, Nummikoski PV, Higginbottom FL, Hermann JS, Makins SR, Buser D. Evaluation of an endosseous titanium implant with a sandblasted and acid-etched surface in the canine mandible: radiographic results. Clin Oral Implants Res 1996;7:240-52. https://doi.org/10.1034/j.1600-0501.1996.070306.x
  19. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res 2006;17:109-14. https://doi.org/10.1111/j.1600-0501.2005.01211.x
  20. Blumenthal NC, Cosma V. Inhibition of apatite formation by titanium and vanadium ions. J Biomed Mater Res 1989;23(A1 Suppl):13-22. https://doi.org/10.1002/jbm.820231305

Cited by

  1. Insertion torque and orthodontic mini-implants: A systematic review of the artificial bone literature vol.227, pp.11, 2011, https://doi.org/10.1177/0954411913495986
  2. Mechanical and Histological Effects of Resorbable Blasting Media Surface Treatment on the Initial Stability of Orthodontic Mini-Implants vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/7520959
  3. Effect of Humeral Locking Plate System on Absorbed Energy in Breast Tissue with Different Radiological Energies Using MCNPX Code vol.49, pp.1, 2011, https://doi.org/10.1520/jte20180389