• 제목/요약/키워드: Mines

Search Result 857, Processing Time 0.025 seconds

Genesis of Iron Ore Deposits in the south-eastern Part of Gyeongnam Porvince, Korea (경남(慶南) 동남부지역(東南部地域) 철광상(鐵鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Woo, Young-Kyun
    • Economic and Environmental Geology
    • /
    • v.21 no.1
    • /
    • pp.45-56
    • /
    • 1988
  • Many hydrothermal skarn-type iron ore deposits inchiding Mulgeum, Yangseong, Maeri and Kimhae mines are distributed in the south-eastern Gyeongnam Province, Korea. The deposits are magnetite veins which occurred in propylitized andesitic rock near the contact with late Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The order of the skarn zones from the vein is garnet-quartz skarn, epidote skarn, and epidote-orthoclase skarn. The garnets include isotropic or anisotropic andradite($Ad_{100{\sim}70}$), and the epidotes are composed of pistacite($Ps_{21-31}$). Fe contents of the epidotes generally increase toward the magnetite veins. Epidotes and garnets often show compositional variations from grain to grain, that is, their Fe and Al contents vary inversely. This suggests that the variations depend mainly upon $fo_2$ during the skarnization. Oxygen and carbon isotope analyses of minerals from andesitic rock, micrographic granite, major skarn zones and post-mineralization zones were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothemal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the more deeply seated micrographic granite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and the extensive isotopic exchange occurred with the propylitized andesitic rock. During this process, the temperature and ${\delta}O^{18}_{H_2O}$ value of hydrothermal solution were lowered gradually. At the stage of iron ore precipitation, because after all the alteration was already finished, the oxygen isotopic exchange with the wall rock was nearly not taken. The relatively high ${\delta}O^{18}$ and ${\delta}O^{18}_{H_2O}$, and relatively low ${\delta}C^{13}$ values of calcites of post mineralization stage, are the results of leaching of the high ${\delta}O^{18}$ chert xenolith in the andesitic rock and low ${\delta}C^{13}$ andesitic rock.

  • PDF

A Preliminary Study on the Potential Source of Cadmium in the Boseong-Jangheung Mine District (전남 보성-장흥 광화대의 잠정적 카드뮴원에 대한 예비연구)

  • Heo, Chul-Ho;So, Chil-Sup;Yun, Seong-Taek;Shim, Sang-Kyun
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • Cadmium occurs as a minor element in sphalerite ((Zn, Fe)S) from the Boseong-Jangheung gold-silver mine district. We analyzed the abundance of cadmium in sphalerite using an electron probe micro analyzer (EPMA) and discussed the natural sources of cadmium in terms of bedrock geochemistry, in order to preliminarily reconnoiter the potential cadmium contamination in mine districts. Cadmium contents of sphalerites from the Au-Ag mines (Bodeok, Mundeok, Jeonbo, Boknae, Keumsan) in the Boseong-Jangheung district are considerably high, compared with cadmium contents of sphalerites (average = 0.5 wt.% Cd, maximum = 4.4 wt.% Cd) in the world. Sphalerites from the Keumsan mine (average = 9.49 wt.% Cd, maximum=11.22 wt. Cd) are highly enriched in cadmium. Our data suggest that the Boseong-Jangheung area is an important potential site of cadmium contamination in Korea. Based on bedrock geochemistry, natural causes of cadmium enrichment in sphalerite from the mine district are thought to be the mixing of cadmium leached from organic-rich, metasedimentary rocks (including coal) and/or black shales. From this study, we propose that the pinpointing of potential sites of pollution by toxic heavy metals can be done effectively through detailed reconnaisance study on mineralogical compositions of ore minerals such as sphalerite from the mine area.

  • PDF

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.

Numerical Study on Vertical Stress Estimation for Panel Pillars at Room and Pillar Mines (주방식 광산의 패널 광주 수직응력 추정을 위한 수치해석 연구)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • This paper examines the vertical stress change concentrated on mine pillar which occurs due to the stress disturbance from opening excavation at room and pillar mine by FLAC3D, a finite difference method (FDM) software. The mesh size combination is decided with a careful consideration of relative error and run-time, then its performance is verified. A series of numerical analyses is conducted and the vertical stress at central pillar was observed for the test cases of 1×1 to 11×11 mine pillars, 40 m to 320 m depth with 40 m difference. The results show that the vertical stress of pillar approaches to the similar value with the value estimated by tributary area theory(TAT) when the development area (NP) is increased or the height of overburden (HOB) is decreased, while it is overestimated in the opposite case. Furthermore, it also represents that the vertical stress factor (VSF) converges to a specific value when the depth is increased whille keeping the development area identical.

Quality of Korean Soil and It's Prospection Influenced with Heavy Metals and Arsenic Analyzed with Soil Pollution Indices (토양오염지표에 의한 국내 토양의 중금속과 비소 오염도 및 향후 전망)

  • 박용하;윤정호;이승희;김강석
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.55-65
    • /
    • 1996
  • Soil quality of most of Soil Network area was estimated healthy by employing Soil Pollution Indices (Soil Pollution Score and Soil Pollution Class). However, 1.5∼3.7% of the total Soil Network area was determined Soil Pollution Class (SPC) 4 which may need cleanup process due to slight or heavy pollution with arsenics and heavy metals. Numbers of the SPC 4 sites were 9, 47, 19, 17, and 17 in 1987, 1989, 1991, 1993, and 1994, respectively During 1987 and 1994, all of SPC 4 sites were identified agricultural land except one in 1994. Soil Pollution Scores (SPSs) was determined high around smelters, metalliferous mines, and industrial sites among the 16 major soil pollution sources of the Soil Network. Also, most area of SPC 4 sites were densely populated in these area of the Soil Network. SPSs of Inchon and Taegu were high among the other major cities and provinces in Korea. Numbers of SPC 4 were high in the province of Kangwon, Kyongbuk, Kyongnam amongst. Cumulative numbers of SPC 4 multiplied by a weighting value 0.3 during 1987 and 1994 of the Soil Network were regressed to develop a model equation for prospecting the soil quality. The model equation was Y= 1.16+0.23x, where as Y is the number of Class 4 and x is the year. Resulting the area of SPC 4 were 4.8%, 6.0%, 6.6% of the Soil Network in the year of 2001, 2006, 2011, respectively Based on this results, the area of SPC 4 would increase 5, 7, and 10 times comparing the area polluted with heavy metals in 1987.

  • PDF

Characteristics of domestic coals and efficient control of coal dust (국내 석탄광 분진의 특성과 효율적 제어)

  • Kim, Soo Hong;Kwon, Jun Wook;Kim, Sun Myung;Kim, Yun kwang;Jang, Yun Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.589-609
    • /
    • 2017
  • This study carried out the density and energy dispersive X-ray spectroscopy and particle size analysis which are the physical characteristics of coal dust by collecting samples of coal dust in the five domestic mines to control the coal dust through ventilation in the workplace for coal mining in the country. This will contribute to a more comfortable working environment by understanding the physical characteristics of the coal dust which is derived from any hard coal produced domestically. In particular, the result of PSA analysis showed that the size of coal dust sample for this study ranged from $0.007{\sim}88.614{\mu}m$ were the particles less than $3.5{\mu}m$, the size range responsible for pneumoconiosis. To observe the flow of coal dust collected on the wind speed, the fallout of coal dust produced by the wind tunnel for the wind was measured and the particle size analysis of coal dust fallout was carried out. In addition, airborne dust is measured according to the mine velocity by using a multi-stage Anderson sampler in the mine where fine dust is generated in a large amount and the wind speed is found out to control the coal dust below $3.5{\mu}m$. In addition, natural ventilation pressure of A mine was calculated to prevent over design of the main fan.

Comparison of Characteristics of Drone LiDAR for Construction of Geospatial Information in Large-scale Development Project Area (대규모 개발지역의 공간정보 구축을 위한 드론 라이다의 특징 비교)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.768-773
    • /
    • 2020
  • In large-scale land development for the rational use and management of national land resources, the use of geospatial information is essential for the efficient management of projects. Recently, drone LiDAR (Light Detection And Ranging) has attracted attention as an effective geospatial information construction technique for large-scale development areas, such as housing site construction and open-pit mines. Drone LiDAR can be classified into a method using SLAM (Simultaneous Localization And Mapping) technology and a GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit) method. On the other hand, there is a lack of analytical research on the application of drone LiDAR or the characteristics of each method. Therefore, in this study, data acquisition, processing, and analysis using SLAM and GNSS/IMU type drone LiDAR were performed, and the characteristics and utilization of each were evaluated. As a result, the height direction accuracy of drone LiDAR was -0.052~0.044m, which satisfies the allowable accuracy of geospatial information for mapping. In addition, the characteristics of each method were presented through a comparison of data acquisition and processing. Geospatial information constructed through drone LiDAR can be used in several ways, such as measuring the distance, area, and inclination. Based on such information, it is possible to evaluate the safety of large-scale development areas, and this method is expected to be utilized in the future.

Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea (국내 녹색-청색계열 무기안료의 산출과 광물학적 특성)

  • Jeong, Gi Young;Cho, Hyen Goo;Do, Jin Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Traditional inorganic pigments applied to dancheong, buddhist painting, and wall painting were produced from natural minerals which were later replaced by synthetic pigments, resulting in the loss of the recipe to prepare mineral pigments. This study examined the domestic occurrence and mineralogical characteristics of green and blue mineral pigments required for the conservation of cultural heritage. Cuprous green-blue mineral pigments were found as the weathering products of waste dumps and ores of abandoned Cu-Pb-Zn sulfide mines. Mineralogical analyses using X-ray diffraction and scanning electron microscopy identified diverse hydrous copper sulfate pigments of green (brochantite and devilline) and blue color (linarite, bechererite, and schulenbergite) with minor green pigments of antlerite and atacamite commonly associated with cerussite, smithsonite, anglesite, and cuprite. Noerok, a green silicate pigment, replaced the fractured basalt lava. Celadonite was responsible for the green color of Noerok, closely associated with opal in varying ratio. Glauconite, green silicate pigment, was identified in the Yellow Sea sediments. Malachite and azurite, the most important green and blue pigments of Korean cultural heritage, were not identified in this study.