• Title/Summary/Keyword: Mineral Detection

Search Result 199, Processing Time 0.028 seconds

Corrections of Self-Absorption Effect Using the Monte Carlo Method in the Radioactivity Analysis of Environmental Samples (환경시료의 방사능 분석에서 Monte Carlo 방법을 이용한 자체흡수 효과 보정)

  • Seo, Bum-Kyoung;Lee, Dae-Won;Lee, Kil-Yong;Yoon, Yoon-Yeol;Yang, Tae-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2001
  • In the low level radioactivity measurement, such as environmental radioactivity, there were used commonly cylindrical and Marinelli type beakers by means of measurement container. If there are differences in the matrix density or sample height between standard source and sample, it must be determined full energy peak efficiency considering self absorption effect. In this paper, we compared measured efficiency with calculated full energy peak efficiencies in the HPGe detector using the Monte Carlo method. For cylindrical container, we calculated the variation of the efficiency with sample height. Also, we calculated the variation of the detection efficiency with apparent density in the cylindrical and Marinelli container. It was seen that it need to be corrected for self absorption in the energy range of below 1000keV. Also, in order to verify the validity of calculation, we compared the calculated value with reference value using NIST SRM 4353 reference soil.

  • PDF

A Survey on the Characteristics of Mineral Inorganic in Ground-Water of Gapyeong County (가평지역의 지하수중에 함유된 미네랄성분 조사에 관한 연구)

  • Park Gyoung-Su;Kim Jong-Chan;Oh Jo-Gyo;Kweon Kyung-Ahn;Jung Eun-Hee;Hwang Sun-Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.1 s.55
    • /
    • pp.55-63
    • /
    • 2005
  • Ground water samples of 275 were collected from Gapyeong county which it contained six-eup and myeon and analyzed for 12 mineral inorganics extending from March to October in 2004. Among the inorganics, Calcium, Magnesium, Sodium, Potassium, Copper and Zinc had more than $70\%$ of detection frequencies, which coincided with essential inorganics required by the human body. The average values of inorganic contents by sampling sites were insignificant. Fluorine contents of 8 samples, $2.9\%$ of 275 samples, exceeded KDWR, and it was considered to be affected by a base rock being made up granite and gneiss because there were not polluting sources around. It is necessary to find out relation between geological characteristics and mineral inorganics in ground water through the further investigation. Compared to noted concentrations of bottled water, inorganic minerals including Calcium, magnesium, Sodium and Potassium related to taste were fluent double in target samples and those average concentrations were 14.80, 3.80, 7.60, and $2.31\cal{mg/L}$ respectively.

Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry (탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링)

  • In Seok Joung;AHyun Cho;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.144-153
    • /
    • 2024
  • Recent research is increasingly focused on utilizing seismic waves for structure health monitoring (SHM). Specifically, seismic interferometry, a technique applied in geophysical surveys using ambient noise, is widely applied in SHM. This method involves analyzing the response of buildings to propagating seismic waves. This enables the estimation of changes in structural stiffness and the evaluation of the location and presence of damage. Analysis of seismic interferometry applied to SHM, along with case studies, indicates its highly effective application for assessing structural stability and monitoring building conditions. Seismic interferometry is thus recognized as an efficient approach for evaluating building integrity and damage detection in SHM and monitoring applications.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

A Review on Past Cases of Geophysical Explorations for Assessment of Slope Stability (사면 안정성 평가를 위한 물리탐사 적용 사례 분석)

  • Cho, Ahyun;Joung, Inseok;Jeong, Juyeon;Song, Seo Young;Nam, Myung Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.111-125
    • /
    • 2022
  • Since landslide can cause huge damages to many facilities, close characterization of slopes is needed for appropriate reinforcements for the unstable ones in order to prevent the damages. Geophysical surveys, which can characterize a large area at a relatively low cost without disturbing slopes, have been widely employed for the assessment of slope stability in other countries. However, only conventional direct investigation methods are mainly used in Korea. In this paper, we analyzed various cases, which evaluated slope stabilities by characterizing slopes using geophysical exploration. First, we introduced changes in geophysical properties due to unstable media of slope like fracture location, fracture connectivity and distribution of groundwater level, and subsequently discussed the applicability of geophysical methods to the detection of the changes; the methods include electrical resistivity survey, seismic survey, self-potential survey, induced polarization survey and ground penetrating radar. Based on this description, we analyzed how geophysical surveys were performed on various slopes.

Swell Effect Correction for the High-resolution Marine Seismic Data (고해상 해저 탄성파 탐사자료에 대한 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.240-249
    • /
    • 2013
  • The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.

Business Ecosystem-focused Commercialization Strategy for Real-time Monitoring and Detection Technology for Landslides (실시간 산사태 모니터링 및 탐지기술에 대한 비즈니스 생태계 기반 기술사업화 전략 연구)

  • Sawng, Yeong-Wha;Lim, Dong-Hyun;Chae, Byung-Gon;Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.223-233
    • /
    • 2016
  • This study establishes a commercialization strategy for technology that can monitor and detect landslides in real time. An effective commercialization strategy was sought through both qualitative and quantitative analyses. The qualitative analysis considered the business environment in detail, while the quantitative analysis examined technologically strong and weak areas by visualizing the links between IPC (International Patent Classification) code structure and patent applicants. The results from both analyses are considered together, with particular attention paid to the business environment. The resulting integrated analysis comprehensively explores the degree of technological development and the current state of real-time monitoring and detection technology for landslides. The integrated analysis identified complementary assets in the business environment, as there is strong development and many research entities in this area. This suggests positive reinforcement for commercialization with two sub-strategies: (1) exploring demand with complementary assets, and (2) providing technology information for explored demand, which should facilitate successful commercialization. Exploiting this positive reinforcement for technology commercialization could reduce the high uncertainty of the technology and the market, and thus increase the probability of successful commercialization. It is also expected to contribute to long-term success by strengthening collaboration between the supply and demand sides.

Detection of Titanium bearing Myeonsan Formation in the Joseon Supergroup based on Spectral Analysis and Machine Learning Techniques (분광분석과 기계학습기법을 활용한 조선누층군 타이타늄 함유 면산층 탐지)

  • Park, Chanhyeok;Yu, Jaehyung;Oh, Min-Kyu;Lee, Gilljae;Lee, Giyeon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • This study investigated spectroscopic exploration of Myeonsan formation, the titanium(Ti) ore hostrock, in Joseon supergroup based on machine learning technique. The mineral composition, Ti concentration, spectral characteristics of Myeonsan and non-Myeonsan formation of Joseon supergroup were analyzed. The Myeonsan formation contains relatively larger quantity of opaque minerals along with quartz and clay minerals. The PXRF analysis revealed that the Ti concentration of Myeosan formation is at least 10 times larger than the other formations with bi-modal distribution. The bi-modal concentration is caused by high Ti concentrated sandy layer and relatively lower Ti concentrated muddy layer. The spectral characteristics of Myeonsan formation is manifested by Fe oxides at near infrared and clay minerals at shortwave infrared bands. The Ti exploration is expected to be more effective on detection of hostrock rather than Ti ore because ilmenite does not have characteristic spectral features. The random-forest machine learning classification detected the Myeonsan fomation at 85% accuracy with overall accuracy of 97%, where spectral features of iron oxides and clay minerals played an important role. It indicates that spectral analysis can detect the Ti host rock effectively, and can contribute for UAV based remote sensing for Ti exploration.

Quantitative Light-Induced Fluorescence: A Potential Tool for Dental Hygiene Process (Quantitative Light-Induced Fluorescence의 이해와 치위생 과정에서의 활용방안)

  • Kim, Hee-Eun
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.115-124
    • /
    • 2013
  • Recently, there have been improvements in diagnostic methods for the assessment of early caries lesions. The reason is that dental professionals are seeking methods to reliably detect incipient dental caries and to remineralize them. This review examines the literature on principles, theoretical background, and history of the Quantitative Light-Induced Fluorescence (QLF) system (Inspektor Research Systems BV, The Netherlands). Furthermore, this paper discusses the potential application of QLF system to clinical practice for educational purpose, enabling dental hygiene students to perform oral health assessment using the QLF system. In addition, the clinical application of QLF system can motivate patients by providing additional visual information about caries and bacterial activity. The evidences on validity and reliability of the QLF system for detection of longitudinal changes in de/remineralization and caries were examined. The QLF system is capable of monitoring and quantifying mineral changes in early caries lesions. Therefore, it can be used to assess the impacts of caries preventive measures on the remineralization and reversal of the caries process. And the QLF system is a very promising equipment to assess educational effectiveness for dental hygiene students in their learning process. In conclusion, the QLF system is the most effective technology for more sensitive staging of caries and treatment without surgical intervention.

Discrimination of artificial explosions by using seismo-acoustic data in 2004 and installation of BRDAR (지진-음파 자료를 이용한 2004년도 인공발파 식별과 백령도 지진-음파 관측망 설치)

  • Che, Il-Young;Jeon, Jeong-Soo;Shin, In-Cheol
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.68-73
    • /
    • 2005
  • In succession of the previous works, seismo-acoustic analysis was conducted to collect ground truth events and to discriminate surface explosions from natural earthquakes in the Korean Peninsula for 2004. In this period, total 510 seismo-acoustic events corresponding to 10.8 percent of total seismic events occurred in and near the Korean Peninsula were analyzed and discriminated as artificial surface explosions. Events distribution of the seismo-acoustic events in 2004 is similar to the previous results of 1999-2003. And newly determined seismo-acoustic events were added to the surface explosions database. To extend infrasound detection capability, Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU) installed new seismo-acoustic array (BRDAR) in Baekryoung Island last November, 2004. The array configuration and design is nearly same to previous seismo-acoustic arrays CHNAR, KSGAR, a triangular 1 km aperture. BRDAR consists of 5 short period vertical seismometers (GS-13) in seismic vaults and 13 microbarometers (Chaparral Model 2). Preliminary analysis using data collected from BRDAR shows an extension of infrasound detection capability to western part of the Korean Peninsula. Also, multiple observations of infrasound at BRDAR and other arrays gave an opportunity to localize sound source regions.

  • PDF