• Title/Summary/Keyword: Mineral Detection

Search Result 199, Processing Time 0.025 seconds

Optimum Conditions of Freezing Lyophilization and Bioluminescence Activity Recovery for Environmental Applications Using a Recombinant Strain (유전자 재조합 균주를 환경에 적용하기 위한 (동결) 건조 및 활성회복 조건 최적화)

  • Ko Kyung-Seok;Kim Myung-Hee;Kong In-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.43-50
    • /
    • 2006
  • Bioreporter bacteria, such as recombinant bioluminescent bacteria, have been used for the detection of specific compounds in complex environmental media. In this study, optimum conditions for the preparation and application of deep-freezed and Iyophilized recombinant bioluminescent strain KG1206 were investigated for the future application on contaminated environmental sites. Genetically engineered microorganism, Pseudomonas putida mt-2 KG1206, contains TOL plasmid and the plasmid inserted $P_{m}$, promoter on the upper part of lux gone in vector pUCD615, and m-toluate and benzoate are considered direct inducers for bioluminescence. Optimum conditions determined for the preparation and application of the deep-freezed and lyophilized strain were followings: cryoprotective agent (24% sucrose), lyophilization time (12 hrs), strain concentration ($OD_{600}=0.6$), reconstitution for freezed strain (quick reconstitution at $35^{\circ}C$), reconstitution for lyophilized strain ($3{\sim}6$ hrs exposure on LB medium), carrying conditions (keep at $20^{\circ}C$ after reconstitution). These results demonstrate the feasibility of deep-freezed or lyophilized state of genetically engineered bioluminescent strain for environmental usage.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Simultaneous Estimation of the Fat Fraction and R2* Via T2*-Corrected 6-Echo Dixon Volumetric Interpolated Breath-hold Examination Imaging for Osteopenia and Osteoporosis Detection: Correlations with Sex, Age, and Menopause

  • Donghyun Kim;Sung Kwan Kim;Sun Joo Lee;Hye Jung Choo;Jung Won Park;Kun Yung Kim
    • Korean Journal of Radiology
    • /
    • v.20 no.6
    • /
    • pp.916-930
    • /
    • 2019
  • Objective: To investigate the relationships of T2*-corrected 6-echo Dixon volumetric interpolated breath-hold examination (VIBE) imaging-based fat fraction (FF) and R2* values with bone mineral density (BMD); determine their associations with sex, age, and menopause; and evaluate the diagnostic performance of the FF and R2* for predicting osteopenia and osteoporosis. Materials and Methods: This study included 153 subjects who had undergone magnetic resonance (MR) imaging, including MR spectroscopy (MRS) and T2*-corrected 6-echo Dixon VIBE imaging. The FF and R2* were measured at the L4 vertebra. The male and female groups were divided into two subgroups according to age or menopause. Lin's concordance and Pearson's correlation coefficients, Bland-Altman 95% limits of agreement, and the area under the curve (AUC) were calculated. Results: The correlation between the spectroscopic and 6-echo Dixon VIBE imaging-based FF values was statistically significant for both readers (pc = 0.940 [reader 1], 0.908 [reader 2]; both p < 0.001). A small measurement bias was observed for the MRS-based FF for both readers (mean difference = -0.3% [reader 1], 0.1% [reader 2]). We found a moderate negative correlation between BMD and the FF (r = -0.411 [reader 1], -0.436 [reader 2]; both p <0.001) with younger men and premenopausal women showing higher correlations. R2* and BMD were more significantly correlated in women than in men, and the highest correlation was observed in postmenopausal women (r = 0.626 [reader 1], 0.644 [reader 2]; both p < 0.001). For predicting osteopenia and osteoporosis, the FF had a higher AUC in men and R2* had a higher AUC in women. The AUC for predicting osteoporosis was highest with a combination of the FF and R2* in postmenopausal women (AUC = 0.872 [reader 1], 0.867 [reader 2]; both p < 0.001). Conclusion: The FF and R2* measured using T2*-corrected 6-echo Dixon VIBE imaging can serve as predictors of osteopenia and osteoporosis. R2* might be useful for predicting osteoporosis, especially in postmenopausal women.

Analysis of components according to different collecting time and production method in sun-dried salt (채취시기 및 생산방법에 따른 천일염의 성분 분석)

  • Jin, Yong-Xie;Kim, Haeng-Ryan;Kim, So-Young
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.791-797
    • /
    • 2013
  • This study was conducted to investigate the changes in the composition and microbiological properties of domestic sun-dried salt (white and gray salts) according to their collection time and production method. The results showed that the moisture contents of the white and gray sun-dried salts were 10.4~13.2% and 5.2~8.0%, respectively, and the sand contents were 0.1% and 0.2~0.3%, respectively, according to the month. Several samples exceeded the criteria of 15% moisture content and 0.2% sand content. The ash content and salinity of gray salt (below 85% and 90%, respectively) were higher than those of white salt (both below 80%). The total chloride contents of the salts collected in September and October were slightly lower than that of the others and exceeded the criteria of above 40%. In the case of mineral contents, there was no significant difference among the collection times because the analyses showed a marked deviation. The microbiological analysis showed that there was no significant difference among the production method, but the salt samples collected in September and October had relatively high detection rates of total aerobe, staphylococci, and halophilic bacteria.

Interpretation on Making Techniques of Some Ancient Ceramic Artifacts from Midwestern Korean Peninsula: Preliminary Study (한반도 중서부 출토 일부 고대 세라믹 유물의 제작기술 해석: 예비 연구)

  • Lee, Chan Hee;Jin, Hong Ju;Choi, Ji Soo;Na, Geon Ju
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.273-291
    • /
    • 2016
  • Some ceramic artifacts representing time-wise from comb pattern pottery in the Neolithic Age to white porcelain in Joseon Dynasty were selected from 7 sites in the north and south area of Charyeong Mountain Range in order to making techniques interpretation and development process of ancient ceramics through physicochemical and mineralogical quantitative analysis. Studied pottery samples in the Prehistoric times showed trace of ring piling in soft-type, and pottery in the Three Kingdoms Period had both soft and hard-type but kettle-ware and storage-ware were made with ring piling, but table-ware was made by wheel spinning. Different from pottery after the Three Kingdom Period when refinement of source clay was high, pottery in the Neolithic Age and in the Bronze Age exhibited highly mineral content in sandy source clay, which showed a lot of larger temper than source clay. Groundmass of celadon and white porcelain almost did not reveal primary minerals but had high content of minerals by high temperature firing. Ceramic samples showed some different in major and minor elements according to sites irrespective of times. Geochemical behaviors are very similar indicating similar basic characteristics of source clay. However, loss-on-ignition showed 0.01 to 12.59wt.% range with a large deviation but it rapidly decreased moving from the Prehistoric times to the Three Kingdom Period. They have correlation with the weight loss due to firings, according to burning degree of source clay and detection of high temperature minerals, estimated firing temperatures are classified into 5 groups. Pottery in the Neolithic Age and in the Bronze Age belongs from 750 to $850^{\circ}C$ group; pottery in the Three Kingdom Period are variously found in 750 to $1,100^{\circ}C$ range of firing temperature; and it is believed celadon and white porcelain were baked in high temperature of 1,150 to $1,250^{\circ}C$. It seems difference between refinement of source clay and firing temperature based on production times resulted from change in raw material supply and firing method pursuant to development of production skill. However, there was difference in production methods even at the same period and it is thought that they were utilized according to use purpose and needs instead of evolved development simply to one direction.

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.

Detection of Chemical Characteristics in Hamcho (Salicornia herbacea L.) according to Harvest Periods (함초(Salicornia herbacea L.)의 채취 시기별 이화학적 특성 탐색)

  • Cha, Jae-Young;Jeong, Jae-Jun;Kim, Yong-Taek;Seo, Won-Seok;Yang, Hyun-Ju;Kim, Jin-Sook;Lee, Yong-Soo
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.683-690
    • /
    • 2006
  • The chemical compositions of amino acids, minerals, betaine, and polyphenolic compounds from Salicornia herbacea (Hamcho) according to harvest periods were analyzed. Changes of chemical characteristics in water and ethanol extracts from Hamcho were evaluated for titratable acidity, pH, soluble solid, and Hunter's color values. The antioxidative activity of water extract from Hamcho was also determined by DPPH $({\alpha},{\alpha}'-diphenyl-{\beta}-picrylhydrazyl)$ scavenging radical activity. Total polyphenolic compounds of Hamcho were shown the highest in August harvested by 201.6 ppm. The betaine of Hamcho water-extract was identified by high performance liquid chromatography (HPLC), which content was 0.248%, 0.269% and 0.204% in June, August, and October, respectively. Major compositional amino acids (mg%) were glutamic acid (582: 519: 664), proline (552: 471: 322), phenylalanine (480: 431: 424), aspartic acid (322: 297: 330), and arginine (282: 321: 483) in June, August, and October, respectively, and major free amino acids (mg%) were proline (9.7: 3.4), asparagine (6.7: 1.4), hydroxyproline (6.4: 2.8), valine (3.9: 2.5), arginine (1.7: 3.0) in June and August, respectively. Mineral contents (mg%) were Na (5,695: 7,536: 5,529), K (1,640: 963: 931), Mg (359: 428: 348), Ca (221: 234: 251), and P (207: 189: 259) in June, August, and October, respectively. Especially, K was high in June, Na and Mg were high in August, and Ca and P were high in October, respectively. DPPH scavenging radical activity was shown in the following order; 0.05% butylated hydroxytoluene (BHT)> August> June> October harvested Hamcho. The chemical components of polyphenolic compounds, betaine, amino acids and minerals were changed by harvest periods according to the growing season, and the highest concentrations of polyphenolic compounds and betaine of Hamcho were shown in August harvested.

Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery (Sentinel-1 InSAR 긴밀도 영상을 이용한 3월5일청년광산의 지표 변화 탐지)

  • Moon, Jihyun;Kim, Geunyoung;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.531-542
    • /
    • 2021
  • Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.