DOI QR코드

DOI QR Code

Simultaneous Estimation of the Fat Fraction and R2* Via T2*-Corrected 6-Echo Dixon Volumetric Interpolated Breath-hold Examination Imaging for Osteopenia and Osteoporosis Detection: Correlations with Sex, Age, and Menopause

  • Donghyun Kim (Department of Radiology, Inje University College of Medicine, Busan Paik Hospital) ;
  • Sung Kwan Kim (Department of Radiology, Inje University College of Medicine, Busan Paik Hospital) ;
  • Sun Joo Lee (Department of Radiology, Inje University College of Medicine, Busan Paik Hospital) ;
  • Hye Jung Choo (Department of Radiology, Inje University College of Medicine, Busan Paik Hospital) ;
  • Jung Won Park (Department of Radiology, Inje University College of Medicine, Busan Paik Hospital) ;
  • Kun Yung Kim (Department of Radiology, Chonbuk National University Hospital)
  • Received : 2018.01.11
  • Accepted : 2019.01.14
  • Published : 2019.06.01

Abstract

Objective: To investigate the relationships of T2*-corrected 6-echo Dixon volumetric interpolated breath-hold examination (VIBE) imaging-based fat fraction (FF) and R2* values with bone mineral density (BMD); determine their associations with sex, age, and menopause; and evaluate the diagnostic performance of the FF and R2* for predicting osteopenia and osteoporosis. Materials and Methods: This study included 153 subjects who had undergone magnetic resonance (MR) imaging, including MR spectroscopy (MRS) and T2*-corrected 6-echo Dixon VIBE imaging. The FF and R2* were measured at the L4 vertebra. The male and female groups were divided into two subgroups according to age or menopause. Lin's concordance and Pearson's correlation coefficients, Bland-Altman 95% limits of agreement, and the area under the curve (AUC) were calculated. Results: The correlation between the spectroscopic and 6-echo Dixon VIBE imaging-based FF values was statistically significant for both readers (pc = 0.940 [reader 1], 0.908 [reader 2]; both p < 0.001). A small measurement bias was observed for the MRS-based FF for both readers (mean difference = -0.3% [reader 1], 0.1% [reader 2]). We found a moderate negative correlation between BMD and the FF (r = -0.411 [reader 1], -0.436 [reader 2]; both p <0.001) with younger men and premenopausal women showing higher correlations. R2* and BMD were more significantly correlated in women than in men, and the highest correlation was observed in postmenopausal women (r = 0.626 [reader 1], 0.644 [reader 2]; both p < 0.001). For predicting osteopenia and osteoporosis, the FF had a higher AUC in men and R2* had a higher AUC in women. The AUC for predicting osteoporosis was highest with a combination of the FF and R2* in postmenopausal women (AUC = 0.872 [reader 1], 0.867 [reader 2]; both p < 0.001). Conclusion: The FF and R2* measured using T2*-corrected 6-echo Dixon VIBE imaging can serve as predictors of osteopenia and osteoporosis. R2* might be useful for predicting osteoporosis, especially in postmenopausal women.

Keywords

Acknowledgement

This study was supported by 2017 Inje University Busan Paik Hospital research grant.

References

  1. Consensus Development Conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993;94:646-650
  2. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Amer J Obstet Gynecol 2006;194(2 Suppl):S3-S11
  3. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N. A reference standard for the description of osteoporosis. Bone 2008;42:467-475
  4. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2006;2:35-43
  5. Bredella MA, Daley SM, Kalra MK, Brown JK, Miller KK, Torriani M. Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel (1)H-MR spectroscopy: a feasibility study. Radiology 2015;277:230-235
  6. Gee CS, Nguyen JT, Marquez CJ, Heunis J, Lai A, Wyatt C, et al. Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging 2015;42:539-544
  7. Karampinos DC, Melkus G, Baum T, Bauer JS, Rummeny EJ, Krug R. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med 2014;71:1158-1165
  8. Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, et al. Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 2011;33:974-979
  9. Singhal V, Miller KK, Torriani M, Bredella MA. Short- and long-term reproducibility of marrow adipose tissue quantification by 1H-MR spectroscopy. Skeletal Radiol 2016;45:221-225
  10. Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 2005;22:279-285
  11. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005;236:945-951
  12. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006;241:831-838
  13. Shen W, Gong X, Weiss J, Jin Y. Comparison among T1-weighted magnetic resonance imaging, modified Dixon method, and magnetic resonance spectroscopy in measuring bone marrow fat. J Obes 2013;2013:298675
  14. Li G, Xu Z, Gu H, Li X, Yuan W, Chang S, et al. Comparison of chemical shift-encoded water-fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females. J Magn Reson Imaging 2017;45:66-73
  15. Li GW, Xu Z, Chen QW, Tian YN, Wang XY, Zhou L, et al. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water-fat separation. Clin Radiol 2014;69:254-262
  16. Yoo HJ, Hong SH, Kim DH, Choi JY, Chae HD, Jeong BM, et al. Measurement of fat content in vertebral marrow using a modified dixon sequence to differentiate benign from malignant processes. J Magn Reson Imaging 2017;45:1534-1544
  17. Le Ster C, Gambarota G, Lasbleiz J, Guillin R, Decaux O, Saint-Jalmes H. Breath-hold MR measurements of fat fraction, T1, and T2* of water and fat in vertebral bone marrow. J Magn Reson Imaging 2016;44:549-555
  18. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2** estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008;60:1122-1134
  19. Fischer MA, Nanz D, Shimakawa A, Schirmer T, Guggenberger R, Chhabra A, et al. Quantification of muscle fat in patients with low back pain: comparison of multi-echo MR imaging with single-voxel MR spectroscopy. Radiology 2013;266:555-563
  20. Yoo YH, Kim HS, Lee YH, Yoon CS, Paek MY, Yoo H, et al. Comparison of multi-echo Dixon methods with volume interpolated breath-hold gradient echo magnetic resonance imaging in fat-signal fraction quantification of paravertebral muscle. Korean J Radiol 2015;16:1086-1095
  21. Kuhn JP, Hernando D, Munoz del Rio A, Evert M, Kannengiessre S, Volzke H, et al. Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 2012;265:133-142
  22. Kuhn JP, Hernando D, Meffert PJ, Reeder S, Hosten N, Laqua R, et al. Proton-density fat fraction and simultaneous R2* R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol 2013;23:3432-3439
  23. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155-163
  24. Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989;45:255-268
  25. Dancey CP, Reidy J. Statistics without maths for psychology, 5th ed. New York, NY: Pearson Prentice Hall, 2011:175-176
  26. McCallum RS. Handbook of Nonverbal Assessment, 2nd ed. Cham: Springer, 2017:182
  27. Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab 2013;98:2294-2300
  28. Ergen FB, Gulal G, Yildiz AE, Celik A, Karakaya J, Aydingoz U. Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Comput Assist Tomogr 2014;38:320-324
  29. Shen W, Scherzer R, Gantz M, Chen J, Punyanitya M, Lewis CE, et al. Relationship between MRI-measured bone marrow adipose tissue and hip and spine bone mineral density in African-American and Caucasian participants: the CARDIA study. J Clin Endocrinol Metab 2012;97:1337-1346
  30. Chung CB, Vande Berg BC, Tavernier T, Cotton A, Laredo JD, Vallee C, et al. End plate marrow changes in the asymptomatic lumbosacral spine: frequency, distribution and correlation with age and degenerative changes. Skeletal Radiol 2004;33:399-404
  31. Karchevsky M, Schweitzer ME, Carrino JA, Zoga A, Montgomery D, Parker L. Reactive endplate marrow changes: a systematic morphologic and epidemiologic evaluation. Skeletal Radiol 2005;34:125-129
  32. Wang YX, Griffith JF. Effect of menopause on lumbar disk degeneration: potential etiology. Radiology 2010;257:318-320
  33. Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, O'Sullivan R, Jones G, et al. Lumbar disc degeneration is associated with modic change and high paraspinal fat content - a 3.0T magnetic resonance imaging study. BMC Musculoskelet Disord 2016;17:439
  34. Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, O'Sullivan R, Jones G, et al. Modic changes in the lumbar spine and their association with body composition, fat distribution and intervertebral disc height - a 3.0 T-MRI study. BMC Musculoskelet Disord 2016;17:92
  35. Li GW, Tang GY, Liu Y, Tang RB, Peng YF, Li W. MR spectroscopy and micro-CT in evaluation of osteoporosis model in rabbits: comparison with histopathology. Eur Radiol 2012;22:923-929
  36. Kim DH, Yoo HJ, Hong SH, Choi JY, Chae HD, Chung BM. Differentiation of acute osteoporotic and malignant vertebral fractures by quantification of fat fraction with a Dixon MRI sequence. AJR Am J Roentgenol 2017;209:1331-1339
  37. Rocha LA, Barreto DV, Barreto FC, Dias CB, Moyses R, Silva MR, et al. Serum ferritin level remains a reliable marker of bone marrow iron stores evaluated by histomorphometry in hemodialysis patients. Clin J Am Soc Nephrol 2009;4:105-109
  38. Kim BJ, Lee SH, Koh JM, Kim GS. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥ 45 years of age (KNHANES 2008-2010). Osteoporos Int 2013;24:2627-2637
  39. Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 2012;36:225-230
  40. Roldan-Valadez E, Pina-Jimenez C, Favila R, Rios C. Gender and age groups interactions in the quantification of bone marrow fat content in lumbar spine using 3T MR spectroscopy: a multivariate analysis of covariance (Mancova). Eur J Radiol 2013;82:e697-e702
  41. Griffith JF, Genant HK. Bone mass and architecture determination: state of the art. Best Pract Res Clin Endocrinol Metab 2008;22:737-764