• Title/Summary/Keyword: Mine Removal

Search Result 154, Processing Time 0.02 seconds

Evaluation of Cu Removal from Mine Water in Passive Treatment Methods : Field Pilot Experiments (자연정화 기반의 현장 파일럿 실험을 통한 광산배수 구리 정화효율 평가)

  • Oh, Youn Soo;Park, Hyun Sung;Kim, Dong Kwan;Lee, Jin Soo;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.235-244
    • /
    • 2020
  • Copper (Cu), one of the main contaminants in the mine drainage from the closed mine area, needs to be removed before exposed to environment because of its toxicity even in the low concentration. In this study, passive treatment based field pilot experiments using limestone and compost media were conducted during 9 months for enhancing Cu removal efficiency of the mine water treatment facility of S mine located in Goseong, Gyeongsangnam-do in South Korea. The pH increase and Cu removal efficiency showed high value at Successive Alkalinity Producing System ( SAPS) > Reducing and Alkalinity Producing System (RAPS) > limestone reactor in a sequence. The compost media using in SAPS and RAPS contributed to raise pH by organic material decomposition with generating alkalinity, thus, Cu removal efficiency increased. Also, experimental results showed that Cu removal efficiency was proportional to pH increase, meaning that pH increase is the main mechanism for Cu removal. Moreover, Sulfate Reduction Bacteria (SRB) was identified to be most activated in SAPS. It is inferred that the sulfate reduction reaction also contributed to Cu removal. This study has the site significance in that the experiments were conducted at the place where the mine water generates. In the future, the results will be useful to select the more effective reactive media used in the treatment facility, which is most appropriate to remediate mine water from the S mine.

A Study on the Robot Teleoperation for Mine Removal (지뢰제거를 위한 로봇 텔레오퍼레이션 기술 연구)

  • Lim, Soo-Chul;Yoo, Sam-Hyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.156-163
    • /
    • 2008
  • Future Combat System(FCS), such as unmanned systems that reduce the danger faced by soldiers in the field, are likely to be studied and developed. Soldiers when finding and disposing of mines risk injury and death. Several methods of safe mine retrieval are investigated. In this paper, a mine removal method, which uses a remote controlled robot to get rid of mines using a 4 channel architecture teleoperation method is used. The robot, when in contact with soil and mines, is controlled by a remote control. The feasibility of using teleoperation controlled system to remove mines is demonstrated in this paper. The Matlab-Simulink was used as a tool to simulate mine removal with robots. The force and position of the robot{slave system of 4 channel architecture) and controller(master system of 4 channel architecture) are analyzed when users handle the controller with sinusoidal force.

Fundamental study on sustainable treatment system of mine water using magnetized solid catalyst

  • Mukuta, Chisato;Akiyama, Yoko
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • In the mine exploration sites, sustainable treatment system of mine water with energy saving and minimized chemical additives is required. Since most of the mine water contains highly-concentrated ferrous ion, it is necessary to study on the removal method of iron ions. We propose the system consisting of two processes; precipitation process by air oxidation using solid catalyst-modified magnetite and separation process combining gravitational sedimentation and magnetic separation using a permanent magnet. Firstly, in the precipitation process (a former process of the system), we succeeded to prepare solid catalyst-modified magnetite. Air oxidation using solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material showed high iron removal capability. Secondly, in the separation process (latter process of the system), solid catalyst-modified magnetite using $Fe_2(SO_4)_3$ as a starting material can be separated by a superconducting bulk magnet and a permanent magnet.

Remediation of Mine Tailings Contaminated with Arsenic and Heavy Metals: Removal of Arsenic by Soil Washing (비소와 중금속으로 오염된 광미의 정화: 토양세척에 의한 비소 제거)

  • Kim, Tae-Suk;Kim, Myoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.808-816
    • /
    • 2008
  • In the present paper, a study has been performed on remediating mine tailings around abandoned mine contaminated with high concentrations of arsenic and heavy metals using the technique of soil washing. Through the removal experiment of arsenic, the optimal conditions in the type and concentration of washing reagent, mixing ratio of mine tailings and washing reagent, and washing time were derived. Results showed that the most effective washing reagents to remove arsenic from mine tailings were oxalic acid(72% removal efficiency) and phosphoric acid(65%), while the oxalic acid(89%) was the most effective in removing the heavy metals containing Cu. In addition, the most economical and efficient washing concentration was 0.25 M and the most suitable washing time was 30 minutes. The optimal mixing ratio of mine tailings and washing reagent was 1 : 20(mass/vol) from the viewpoint of minimization of wastewater produced after the washing, as well as the washing effectiveness. Although the mixture of washing reagents did not help in removal of arsenic, it could lead to much elevated synergy effect on removing Cu and Zn, compared with the single reagent.

Enhanced Separation Technique of Heavy Metal (Pb, Zn) in Contaminated Agricultural Soils near Abandoned Metal Mine (폐금속 광산지역 농경지 납, 아연 오염 토양의 중금속 고도선별)

  • Park, Chan Oh;Kim, Jin Soo;Seo, Seung Won;Lee, Young Jae;Lee, Jai Young;Park, Mi Jeong;Kong, Sung Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.41-53
    • /
    • 2013
  • The study is to propose the optimal separation technique of heavy metals (Pb and Zn) contaminated in soil for improving the removal efficiency by various applicable techniques. The heavy metal contaminated soil samples near abandoned mine X-1 and X-2 were used for the study. Firstly, the wet classification process was shown more than 80% of removal efficiency for lead and zinc. Meanwhile, the magnetic separation process was shown low removal efficiency for lead and zincs because those heavy metals were non-magnetic materials. For the next step, the flotation separation process was shown approximately 24.4% of removal efficiency for zinc, while the gravity concentration process was shown approximately 57% of removal efficiency for lead, and 19.9% of removal efficiency for zinc, respectively. Therefore, zinc contaminated in soil would be effectively treated by the combination technique of the wet classification and the flotation technique. Meanwhile, lead contaminated in soil would be effectively treated by the combination technique of the wet classification process and the flotation process. Furthermore, the extraction of organic matter was shown more effective with aeration, 3% of hydrogen peroxide and 3% of lime such as calcium hydroxide.

Evaluation of Mn Removal Efficiency from the Mine Drainage in the Presence of Fe Using Slag Complex Reactors (제강슬래그 복합매질체를 이용한 철 유입에 따른 광산배수내 망간 제거효율 평가)

  • Kim, Dong-Kwan;Ji, Won Hyun;Kim, Duk-Min;Park, Hyun-Sung;Oh, Youn Soo
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.401-407
    • /
    • 2018
  • For the treatment of heavy metals in the mine drainage from the closed mine area, various methods such as passive, active and semi-active treatments are considered. Among contaminated elements in the mine drainage, Mn is one of the difficult elements for the treatment because it needs high pH over 9.0 for its concentration to be reduced. In this study, the efficiency of various slag complex reactors (slag (S), slag+limestone (SL) and slag+Mn coated gravel (SG)) on Mn removal in the presence of Fe, which is a competitive element with Mn, was evaluated to investigate effective methods for the treatment of Mn in mine drainage. As a result of experiments on Mn removal without Fe during 358 days, using influent with $30{\sim}50Mn{\cdot}mg/L$ and pH 6.7 on the average, S reactor showed continuously high Mn removal efficiency with the average of 99.9% with pH 8.9~11.4. Using the same reactors, Mn removal experiments with Fe during 237 days were conducted with the influent with $40{\sim}60Mn{\cdot}mg/L$. The pH range of effluent reached to 6.1~10.0, which is slightly lower than that of effluent without Fe. S reactor showed the highest range of pH with 7.1~9.9, followed by S+L and S+G reactor. However, the efficiency of Mn removal showed S+L>S>S+G with the range of 94~100%, 68~100% and 68~100%, respectively in spite of relatively low pH range. S+L reactor showed the most resistance on Fe input, which means other mechanisms such as $MnCO_3$ formation by the carbonate prouced from the limestone or autocatalysis reaction of Mn contributed to Mn removal rather than pH related mechanisms. The evidence of reactions between carbonates and Mn, rhodochrosite ($MnCO_3$), was found from the X-ray diffraction analysis of precipitates sample from S+L reactor. From this study, the most effective reactors on Mn removal in the presence of Fe was S+L reactor. The results are expected to be applied for the Mn containing mine water treatment in the presence of Fe within the relatively low range of pH.

Heavy Metal Contamination and Process for Its Removal in the Vicinity of the Dalsung Cu-W Mine (달성광산(達成鑛山) 주변지역(周邊地域)에서의 중금속오염(重金屬汚染)과 이의 제거방안(除去方案))

  • Kim, Kyoung-Woong;Hong, Young-Kook;Kim, Taik-Nam
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The Dalsung copper-tungsten mine in the Taegu area, Korea was closed in 1975 and may be the sources of the heavy metal contamination in the tributary system and soil-plant system due to the mine drainage derived from the mine wastes and tailings. To examine the degree and extent of heavy metal contamination in the vicinity of Dalsung mine area, stream water and soil samples were taken and analyzed for heavy metals by ICP-AES and AAS. Highly contaminated soils are found near the Lower Tunnel No.0 ranging up to $1760{\mu}g/g$ As, $2060{\mu}g/g$ Cu, $1120{\mu}g/g$ Pb and 346 ${\mu}g/g$ Zn. From the results of the sequential extraction methods for the metal speciation, the heavy metals in soils may be derived from soil parent materials and acid mine drainage. With the processes for the heavy metal removal, most of the heavy metal ions in the acid mine drainage are removed by being exchanged with Ca ions held by the bentonite, hydroxyapatite and calcium hydoxide.

  • PDF

Treatment Characteristics of Acid Mine Drainage by Porous Ceramics using Wood Flour as Pore-forming Agent (목분 기포제를 이용한 산업부산물 소재 다공성 세라믹에 의한 산성광산배수의 처리특성 연구)

  • Lee, Yeong-Nam;Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.109-122
    • /
    • 2018
  • This study was conducted to investigate the removal characteristics of heavy metals and sulfate ion from acid mine drainage by porous zeolite-slag ceramics (ZS ceramics) that was prepared by adding wood flour as pore-foaming agent while calcining the mixtures of natural zeolite and converter slag. The batch test showed that the removal efficiency of heavy metals by pellet-type porous ZS ceramics increased as the particle size of wood flour was decreased and as the weight mixing ratio of wood flour to ZS ceramics was increased. The optimal particle size and weight mixing ratio of wood flour were measured to be $75{\mu}m$ and 7~10%, respectively. The removal test with the porous ZS ceramics prepared in these optimal condition showed very high removal efficiencies: more than 98.4% for all heavy metals and 73.9% for sulfate ion. Relative to nonporous ZS ceramics, the increment of removal efficiency of heavy metals by porous ZS ceramics with $75{\mu}m$ and 10% wood flour was 5.8%, 60.5%, 36.9%, 87.7%, 10.3%, and 57.4% for Al, Cd, Cu, Mn, Pb, and Zn, respectively. The mechanism analysis of removal by the porous ZS ceramics suggested that the heavy metals and sulfate ion from acid mine drainage are eliminated by multiple reactions such as adsorption and/or ion exchange as well as precipitation and/or co-precipitation.

Treatment of Acid Mine Drainage using Eggshells and Microalgae (폐난각과 미세조류를 이용한 산성광산배수처리)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.647-652
    • /
    • 2014
  • The aim of this study was to investigate the heavy metal removal and biomass productivity in the Acid Mine Drainage (AMD) using eggshell and microalgae. The experiment was operated 6 days in the eggshell and microalgae hybrid system, and using eggshell powder and microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 2.82 g/L/d from 1.12 g/L initial concentration in 6 days was reached with light transmittance of 97% at a 305 mm depth in the optical panel photobioreactor (OPPBR). The total removal efficiency of Fe, Cu, Zn, Mn and Cd was found to be 98.92%, 99.91%, 98.78%, 88.99% and 98.00% in the AMD using eggshell and Chlorella vulgaris hybrid system, respectively. Additionally, there were significant relationships between biomass and concentration of each heavy metal ($R^2$ = 0.8771, 0.8643, 0.8669, 0.9134 and 0.6277 for Fe, Cu, Zn, Mn and Cd). These results indicated that the eggshell and microalgae hybrid system was highly effective for heavy metal removal when compared to the conventional biological process in the AMD. Therefore, the eggshell and microalgae hybrid system was effective for heavy metal removal and biomass productivity and can be applied to treat AMD in treatment plant.

Design of Passive Treatment Systems for Mine Drainage Waters

  • Jeen, Sung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2017
  • Passive treatment systems are commonly used for remediation of mine drainage waters because they do not require continuous chemical inputs and operation. In this study, the selection and design criteria for such systems were evaluated, particularly the two most commonly used ones, i.e., permeable reactive barriers (PRBs) and vertical flow biological reactors (VFBRs). PRBs and VFBRs are operated on the same principles in terms of biochemical reaction mechanisms, whereas differences relate to configuration, engineering, and water management. In this study, each of these systems were described with respect to key design variables, such as metal removal mechanisms and removal rates, effectiveness and longevity, general design and construction, flow capacity, and cost. The information provided from this study could be used as a design guideline when a passive treatment option is considered for potential remediation of a mine site.