DOI QR코드

DOI QR Code

Evaluation of Mn Removal Efficiency from the Mine Drainage in the Presence of Fe Using Slag Complex Reactors

제강슬래그 복합매질체를 이용한 철 유입에 따른 광산배수내 망간 제거효율 평가

  • 김동관 (한국광해관리공단 기술연구센터) ;
  • 지원현 (한국광해관리공단 기술연구센터) ;
  • 김덕민 (한국광해관리공단 기술연구센터) ;
  • 박현성 (한국광해관리공단 기술연구센터) ;
  • 오연수 (한국광해관리공단 기술연구센터)
  • Received : 2018.09.21
  • Accepted : 2018.10.27
  • Published : 2018.10.28

Abstract

For the treatment of heavy metals in the mine drainage from the closed mine area, various methods such as passive, active and semi-active treatments are considered. Among contaminated elements in the mine drainage, Mn is one of the difficult elements for the treatment because it needs high pH over 9.0 for its concentration to be reduced. In this study, the efficiency of various slag complex reactors (slag (S), slag+limestone (SL) and slag+Mn coated gravel (SG)) on Mn removal in the presence of Fe, which is a competitive element with Mn, was evaluated to investigate effective methods for the treatment of Mn in mine drainage. As a result of experiments on Mn removal without Fe during 358 days, using influent with $30{\sim}50Mn{\cdot}mg/L$ and pH 6.7 on the average, S reactor showed continuously high Mn removal efficiency with the average of 99.9% with pH 8.9~11.4. Using the same reactors, Mn removal experiments with Fe during 237 days were conducted with the influent with $40{\sim}60Mn{\cdot}mg/L$. The pH range of effluent reached to 6.1~10.0, which is slightly lower than that of effluent without Fe. S reactor showed the highest range of pH with 7.1~9.9, followed by S+L and S+G reactor. However, the efficiency of Mn removal showed S+L>S>S+G with the range of 94~100%, 68~100% and 68~100%, respectively in spite of relatively low pH range. S+L reactor showed the most resistance on Fe input, which means other mechanisms such as $MnCO_3$ formation by the carbonate prouced from the limestone or autocatalysis reaction of Mn contributed to Mn removal rather than pH related mechanisms. The evidence of reactions between carbonates and Mn, rhodochrosite ($MnCO_3$), was found from the X-ray diffraction analysis of precipitates sample from S+L reactor. From this study, the most effective reactors on Mn removal in the presence of Fe was S+L reactor. The results are expected to be applied for the Mn containing mine water treatment in the presence of Fe within the relatively low range of pH.

폐광산에서 유출되는 광산배수 내 중금속을 처리하기 위해 자연정화법 및 물리화학처리 등 다양한 방법이 사용되고 있다. 특히 광산배수 내 중금속 중 망간은 처리되기 위해 pH 9 이상의 조건이 필요하기 때문에 처리하기 어려운 원소 중 하나이다. 본 연구에서는 광산배수 내 망간의 효율적인 제거방법을 연구하기 위해 다양한 제강슬래그 복합매질체 반응조(제강슬래그(S), 제강슬래그+석회석(S+L), 제강슬래그+망간코팅자갈(S+G))를 사용하여 경쟁원소인 철 유입에 따른 망간의 제거효율을 평가하였다. 철 유입이 없는 358일간의 실험에서는 평균 pH 6.7의 고농도 망간(30~50 mg/L)이 포함된 원수를 사용했으며 제강슬래그 반응조 유출수는 pH 8.9~11.4에서 평균 99.9%의 지속적으로 높은 망간제거효율을 보였다. 철 유입 없이 망간제거실험을 진행한 반응조를 이용하여 망간농도 40~60 mg/L의 원수에 철을 추가로 유입하여 237일간의 실험을 진행하였다. 망간 제거 이후 pH는 6.1~10.0 범위로 증가하였으며 철 유입 전에 비해 낮은 범위를 보였다. S반응조가 pH 7.1~9.9로 가장 높았으며 S+L 반응조, S+G 반응조가 그 뒤를 이었다. 하지만 망간제거효율은 비교적 낮은 pH 범위임에도 불구하고 S+L 반응조가 94~100%로 가장 높았으며 S반응조와 S+G 반응조는 약 68~100%의 범위의 효율을 보였다. S+L반응조가 철 유입에 가장 높은 저항성을 나타냈으며 이는 pH 이외에도 석회석에 의해 공급된 탄산염에 의한 $MnCO_3$의 형성 또는 자가촉매반응이 망간제거에 기여했다고 판단할 수 있다. X선 회절 분석을 통해 S+L 반응조 침전물에서 로도크로사이트(rhodochrosite, $MnCO_3$)를 확인할 수 있었다. 광산배수 내 망간을 처리하는데 가장 효율적인 반응조는 제강슬래그+석회석 반응조로 나타났으며, 본 연구결과는 철의 유입에 따른 비교적 낮은 pH(9 이하) 범위에서도 망간이 효율적으로 제거될 수 있는 공법을 선정하는데 기여 할 수 있다.

Keywords

References

  1. APHA (1995) Standard methods for the examination of water and wastewater. (eds., Clesceri, L.S., Greenberg, A.E., Eaton, A.D.), Washington DC.
  2. Bamforth, S.M., Mannign, David A.C., Singleton, Ian, Younger, P.L. and Johnson K.L. (2006) Manganese removal from mine waters - investigating the occurrence and importance of manganese carbonates. Appl. Geochem., v.21, n.8, p.1274-1287. https://doi.org/10.1016/j.apgeochem.2006.06.004
  3. Eckenfelder, W.W. (2000) Industrial water pollution control, McGraw-Hill, p.151.
  4. Geremias, R., Laus, R., Macan, J.M., Pedrosa, R.C., Laranjeira, C.M., Silvano, J. and Favere, F.V. (2008) Use of coal mining waste for the removal of acidity and metal ions Al(II), Fe(III) and Mn(II) in acid mine drainage. Environ. Technol., v.29, p.863-869. https://doi.org/10.1080/09593330802015409
  5. Kim, E.H., Rhee, S.S., Lee, G.H., Kim, Y.W., Park, J.B. and Oh, M.H. (2011) Assessment of sorption characteristics of cadmium onto steel-making slag in simulated sea water using batch experiment. J. Korean Geotech. Soc., v.27, n.4, p.43-50. https://doi.org/10.7843/kgs.2011.27.4.043
  6. Kruse, N.A., Mackey, A.L., Bowman, J.R., Brewster, K. and Riefler, R.G. (2012) Alkalinity production as an indicator of failure in steel slag leach beds treating acid mine drainage. Environ. Earth Sci., v.67, n.5, p.1389-1395. https://doi.org/10.1007/s12665-012-1583-5
  7. Kusin, F.M., Jarvis, A.P. and Gandy, C.J. (2010) Hydraulic residence time and iron removal in a wetland receiving ferruginous mine water over a 4 year period from commisiioning. Water Sci. Technol., v.62, p.1937-1946. https://doi.org/10.2166/wst.2010.495
  8. Lee, K.Y., Jang, M., Park, I.G., Um, T.Y. and Lim, K.H. (2013) A study on the application of manganese oxidizing bacteria for manganese treatment in acid mine drainage. J. Kor. Soc. Environ. Eng., v.35, n.8, p.564-570. https://doi.org/10.4491/KSEE.2013.35.8.564
  9. Ministry of Environment (2010) Waterworks design standard.
  10. Morgan, J.J. (2002) Manganese in natural waters and earth's crust: its availability to organism. Met. Ions Biol. Syst., v.37, p.1-34.
  11. Nairn, R.W. and Hedin, R.S. (1993) Contaminant removal capabilities of wetlands constructed to treat coal mine drainage. In G.A. Moshiri (ed) Constructed wetlands for water quality improvement. Lewis publishers, BocaRaton. p.187-195.
  12. Patil, D.S., Chavan, S.M. and Oubagaranadin, John U. Kennedy (2016) A review of technologies for manganese removal from wastewater. J. Environ. Chem. Eng., v.4, n.1, p.468-487. https://doi.org/10.1016/j.jece.2015.11.028
  13. Park, J.H., Kim, H.C., Kim, S.H., Lee, S.T., Kang, B.H., Kang, S.W. and Seo, D.C. (2016) Competitive adsorption characteristics of rapid cooling slag in single- and multi-metal solutions. Korean J. Environ. Agric., v.35, n.1, p.24-31. https://doi.org/10.5338/KJEA.2016.35.1.10
  14. Zahar, M.S.M., Kusin, F.M. and Muhammad S.N. (2015) Adsorption of manganese in aqueous solution by steel slag. Procedia Environ. Sci., v.30, p.145-150. https://doi.org/10.1016/j.proenv.2015.10.026
  15. Ziemkiewicz, P.F. and Skousen, J.G. (1998) The use of steel slag in acid mine drainage treatment and control. In: Proceedings, 19th annual West Virginia surface mine drainage task force symposium, Morgantown.