• Title/Summary/Keyword: Mine Counter Measure

Search Result 2, Processing Time 0.016 seconds

A System Design Method of Mine Warfare Using Information for SONAR and MDV (소나와 무인기뢰처리기 정보를 활용한 기뢰전 체계 설계 방안)

  • Kim, Jun-Young;Shin, Chang-Hong;Kim, Kyung-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1243-1249
    • /
    • 2014
  • The naval mine is the explosives that are installed in the water in order to attack surface ships or submarines. So mine warfare is a very important component of naval operations. In this paper, first, understanding of the general concept about mine warfare. Second, introduce the mine hunting progress and mine sweeping progress. And then, suggest the system design method of mine counter measure warfare using several functions. The functions are mine area detection algorithm for side scan sonar image using Adaboost algorithm, and calculation to mine hunting progress rate and mine sweeping progress rate. And techniques that lead the mine disposal vehicle(MDV) to mine.

Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine (복수광산 주변 중금속 오염 토양의 분광학적 특성)

  • Shin, Ji Hye;Yu, Jaehyung;Jeong, Yong Sik;Kim, Seyoung;Koh, Sang-Mo;Park, Gyesoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.89-101
    • /
    • 2016
  • This study investigated spectral characteristics of heavy metal contaminated soil samples in the vicinity of abandoned Boksu mine. Heavy metal concentrations including arsenic, lead, zinc, copper and cadmium were analyzed by XRF analysis. As a result, all of the soil samples excluding control sample were over-contaminated based on the counter measure standard. The XRD results revealed that quartz, kaolinite and smectite were detected for all of the soil samples and heavy metals in soil were adsorbed on clay minerals such as kaolinite and smectite. The spectral analyses confirmed that spectral reflectance of near-infrared and shorter portion of shortwave-infrared spectrum decreases as heavy metal concentration increases. Moreover, absorption depths at 2312 nm and 2380 nm, the absorption features of clay minerals, decreases with higher heavy metal concentration indicating adsorption of heavy metal ions with clay minerals. It indicates that spectral features and heavy metal contamination of soil samples have high correlations.