DOI QR코드

DOI QR Code

Spectral Characteristics of Heavy Metal Contaminated Soils in the Vicinity of Boksu Mine

복수광산 주변 중금속 오염 토양의 분광학적 특성

  • Shin, Ji Hye (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Jeong, Yong Sik (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Kim, Seyoung (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Koh, Sang-Mo (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Gyesoon (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 신지혜 (충남대학교 우주.지질학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 정용식 (충남대학교 우주.지질학과) ;
  • 김세영 (충남대학교 우주.지질학과) ;
  • 고상모 (한국지질자원연구원 DMR융합연구단) ;
  • 박계순 (한국지질자원연구원 DMR융합연구단)
  • Received : 2016.06.16
  • Accepted : 2016.09.05
  • Published : 2016.09.30

Abstract

This study investigated spectral characteristics of heavy metal contaminated soil samples in the vicinity of abandoned Boksu mine. Heavy metal concentrations including arsenic, lead, zinc, copper and cadmium were analyzed by XRF analysis. As a result, all of the soil samples excluding control sample were over-contaminated based on the counter measure standard. The XRD results revealed that quartz, kaolinite and smectite were detected for all of the soil samples and heavy metals in soil were adsorbed on clay minerals such as kaolinite and smectite. The spectral analyses confirmed that spectral reflectance of near-infrared and shorter portion of shortwave-infrared spectrum decreases as heavy metal concentration increases. Moreover, absorption depths at 2312 nm and 2380 nm, the absorption features of clay minerals, decreases with higher heavy metal concentration indicating adsorption of heavy metal ions with clay minerals. It indicates that spectral features and heavy metal contamination of soil samples have high correlations.

본 연구는 폐금속광산인 복수광산 주변토양을 대상으로 X선형광분석법, X선회절분석법 및 휴대용 분광계를 이용하여 토양 내 광물조성을 확인하고 비소, 납, 아연, 구리, 카드뮴 등의 중금속오염 정도에 따른 분광특성을 고찰하였다. 그 결과 대조군 시료를 제외한 모든 시료에서 토양오염대책기준을 초과하였다. X선회절분석 결과 모든 토양시료에서 석영, 고령토 그리고 스멕타이트 군의 광물이 검출되었고 중금속은 점토광물에 흡착하여 존재함을 확인하였다. 분광분석을 통해 대조군시료와 중금속 오염시료의 분광곡선을 분석한 결과 토양 내 중금속 함량이 증가함에 따라 근적외선대역과 단파적외선의 단파장 영역에서 반사도가 감소함을 확인하였다. 또한 흡광깊이에 따른 오염도와의 상관성을 고려하여 본 결과 점토광물의 흡광특성인 2312 nm와 2380 nm에서 점토광물에 의한 중금속흡착에 따라 오염도가 높을수록 흡광깊이가 감소하는 특징을 보인다. 이는 분광학적 특성이 중금속의 오염도와 상당한 상관성이 있음을 지시한다.

Keywords

References

  1. Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G. (2009) The ASTER spectral library version 2.0. Remote Sensing of Environment, 113(4), 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  2. Bishop, J.L., Lane, M.D., Dyar, M.D., and Brown, A.J. (2008) Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Minerals, 43(1), 35-54. https://doi.org/10.1180/claymin.2008.043.1.03
  3. Bradl, H.B. (2004) Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1-18. https://doi.org/10.1016/j.jcis.2004.04.005
  4. Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., and Kim, K.W. (2008) Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112(7), 3222-3233. https://doi.org/10.1016/j.rse.2008.03.017
  5. Choe, E.Y., Hong, S.Y., Kim, K.W., Kim, Y.H., and Zhang, Y.S. (2010) Monitoring of Soil Properties using VNIR Spectroscopy. Korean Society of Soil Science and Fertilizer, 94-103 (in Korean).
  6. Choi, S.G., Park, S.J., Lee, P.K., and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. The Korean Society of Economic and Environmental Geology, 37, 1-19 (in Korean).
  7. Choi, S.J., Kim, C.H., and Lee, S.G. (2009) Comparison of the Heavy Metal Analysis in Soil Samples by Bench-Top ED-XRF and Field-Potable XRF. Analytical Science and Technology, 22(4), 293-301 (in Korean with English abstract).
  8. Clark, R.N., Swayze, G.A., Wise, R., Livo, K.E., Hoefen, T., Kokaly, R.F., and Sutley, S.J. (2007) USGS digital spectral library splib06a. US Geological Survey, Digital Data Series, 231.
  9. Hauff, P. (2008) An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Spectral International Inc, 80001, 303-403.
  10. Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N., and Pontual, S. (2001) Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96(5), 939-955. https://doi.org/10.2113/96.5.939
  11. Hu, W., Huang, B., Weindorf, D.C., and Chen, Y. (2014) Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. Bulletin of environmental contamination and toxicology, 92(4), 420-426. https://doi.org/10.1007/s00128-014-1236-3
  12. Hyun, H,J., Hwag, U.D., Kim, Y.I., Lee, K.H., and Han, J.G. (2010) Gold Mines in Korea. Korean Institute of Geoscience and Mineral Resources, Daejeon, Korea, 226p.
  13. Jeong, Y.S., Yu, J.H., Koh, S.M., and Heo, C.H. (2014) Spectroscopy of Skarn Minerals in Dangdu Pb-Zn Deposit and Assessment of Skarn Exploration Approaches Employing Portable Spectrometer. J. Miner. Soc. Korea, 27(3), 135-147 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.3.135
  14. Jeong, Y.S. Yu, J.H., Koh, S.M., Heo, C.H., and Lee, J.A. (2016) Spectral characteristics of minerals associated with skarn deposits: a case study of Weondong skarn deposit, South Korea. Geosciences Journal, 20(2), 167-182. https://doi.org/10.1007/s12303-015-0043-0
  15. Jung, G.B., Kim, W.I., Lee, J.S., Lee, J.S., Park, C.W., and Koh, M.H. (2005) Characteristics of heavy metal contamination in residual mine tailings near abandoned metalliferous mines in Korea. Korean Journal of Environmental Agriculture, 24(3), 222-231 (in Korean with English abstract). https://doi.org/10.5338/KJEA.2005.24.3.222
  16. Kerr, A., Rafuse, H., Sparkes, G., Hinchey, J., and Sandeman, H. (2011) Visible/infrared spectroscopy (VIRS) as a research tool in economic geology: Background and pilot studies from Newfoundland and Labrador. Geological Survey, Report, 11, 145-166.
  17. Ki, S.K., Park, H.S., Jo, R.H., Choi, K.K., Yang, H., and Park, J.H. (2014) Distribution Correlation between Heavy Metals Contaminants and PAHs Concentrations of Soils in the Vicinity of Abandoned Mines. Korean Journal of Environmental Agriculture, 33(4), 239-244 (in Korean with English abstract). https://doi.org/10.5338/KJEA.2014.33.4.239
  18. Kim, J.D. (2005) Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province. Journal of Korean Society of Environmental Engineers, 27(6), 626-634 (in Korean with English abstract).
  19. Kim. J.I., Yoon. J.G., Kim. N.Y., Lee, H.G., Ko, H.W., and Kim, T.S. (2015) Applicability of x-ray fluorescence analysis for Heavy Metal Analysis in soil. The Korean Society of Analytical Sciences, 215-216 (in Korean).
  20. Ko, K.H., Choi, W.J., Kwon, H.J., Kim, Y.M., and Lee. I.S. (2014). Mineralogical and geochemical study on ore minerals in Useok and Boksu mines, Hwanggangri area. 2014 The Geological Society of Korea, 244-244 (in Korean).
  21. Kokaly, R.F. and Clark, R.N. (1999) Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote sensing of environment, 67(3), 267-287. https://doi.org/10.1016/S0034-4257(98)00084-4
  22. Kwon, H.I. (2014) Yearbook of MIRECO Statistics, Mine reclamation corporation, coal center, Seoul.
  23. Lee. H.G. and Choi, Y.S. (2016) Mapping copper and lead concentrations by incorporating advantageous aspects of ICP-AES and portable XRF analysis data. Joint Conference of the Geological Science & Technology of Korea, Busan, April 20-22, 163p.
  24. Lee, M.S. and Park, B.S. (1965). Instruction and geological survey of Hwanggangri area.
  25. Lee, S.E., Lee, J.S., and Chon, H.T. (2005) Environmental contamination and bioavailability assessment of heavy metals in the vicinity of the Dogok Au-Ag-Cu mine. Economic and Environmental Geology, 38(2), 135-142, (in Korean with English abstract).
  26. Liu, Y., Li, W., Wu, G., and Xu, X. (2011). Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data-A case study along Le'an River, China. Geo-spatial Information Science, 14(1), 10-16. https://doi.org/10.1007/s11806-011-0424-0
  27. Mine Reclamation Corporation. (2014) Reclamation of Dong-A Asbestos Mines District 1, 11p.
  28. Ministry of Environment. (2007) A Report of Soil Pollution Investigation abandon, 2007.
  29. Ministry of Environment. (2016) Soil Environment Conservation Act in Korea.
  30. Ministry of Environment and National Insitute of Environmnetal Research. (2014) Result of the soil quality monitoring network and the Soil Pollution Investigation, 2013.
  31. Ministry of Environment and National Insitute of Environmnetal Research. (2015) Heavy metal concentration on 74 site among 140 site of Abandoned Metal Mine in Gangweon and North Chungcheong Province.
  32. Na, E.S., Lee. Y.J. Ko, K.Y., Chung, D.Y., and Lee, K.S. (2013) Risk Assessment for Heavy Metals in Soil, Ground Water, Rice Grain nearby Abandoned Mine Areas. Korean Journal of Environmental Agriculture, Vol. 32, No. 4, 245-251 (in Korean with English abstract). https://doi.org/10.5338/KJEA.2013.32.4.245
  33. National Institute of Environmental Research (2015) Environmental and Health Effects Survey of Residents around 2nd Phase Abandoned Metal Mines(II).
  34. Pandit, C.M., Filippelli, G.M., and Li, L. (2010) Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. International Journal of Remote Sensing, 31(15), 4111-4123. https://doi.org/10.1080/01431160903229200
  35. Pontual, S,, Gamson, P., and Merry, N. (2012) Spectral interpretation field manual. Spectral analysis guides for Mineral Exploration, G-Mex Version 3.0. Ausspec International Pty. Ltd. Vol. 1.
  36. Rathod, P.H., Rossiter, D.G., Noomen, M.F., and Van der Meer, F.D. (2013) Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. International journal of phytoremediation, 15(5), 405-426. https://doi.org/10.1080/15226514.2012.702805
  37. Ravet, N., Chouinard, Y., Magnan, J. F., Besner, S., Gauthier, M., and Armand, M. (2001). Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 97, 503-507.
  38. Ren, H.Y., Zhuang, D.F., Singh, A.N., Pan, J.J., Qiu, D.S., and Shi, R.H. (2009) Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: A case study. Pedosphere, 19(6), 719-726. https://doi.org/10.1016/S1002-0160(09)60167-3
  39. Rossel, R.A.V. and Behrens, T. (2010) Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1), 46-54. https://doi.org/10.1016/j.geoderma.2009.12.025
  40. Shefsky, S. (1997) Comparing Field Portable X-Ray Fluorescence (XRF) to laboratory analysis of heavy metals in soil. In International Symposium of Field Screening Methods for Hazardous Wastes and Toxic Chemicals, Las Vegas, NV, 29-31 January.
  41. Sherman, D.M. and Waite, T.D. (1985) Electronic spectra of $Fe^{3+}$ oxides and oxide hydroxides in the near IR to near UV. American Mineralogist, 70(11-12), 1262-1269.
  42. Shin, D. and Lee, I. (2003a) Evaluation of the volatilization and infiltration effects on the stable isotopic and mineralogical variations in the carbonate rocks adjacent to the Cretaceous Muamsa Granite, South Korea. Journal of Asian Earth Sciences, 22(3), 227-243. https://doi.org/10.1016/S1367-9120(03)00064-6
  43. Shin, D. and Lee, I. (2003b) Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion (Hwanggangri mineralized zone, South Korea): geochemistry, phase relationships, and stable isotope studies. Ore Geology Reviews, 22(1), 17-39. https://doi.org/10.1016/S0169-1368(02)00085-9
  44. Thompson, A.J., Hauff, P.L., and Robitaille, A.J. (1999) Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy. SEG newsletter, 39, 16-27.
  45. Um, T.H., Kim, Y.T., Lee, K.G., Kim, Y.J., Kang, S.G., and Kim, J.H. (2002) Properties of heavy metal adsorption of clay minerals. Journal of the Korean Ceramic Society, 39(7), 663-668 (in Korean with English abstract). https://doi.org/10.4191/KCERS.2002.39.7.663
  46. USEPA (2007) Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Available. online at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf (verified 30.04.13.).
  47. Usman, A. R. A. (2008) The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma, 144(1), 334-343. https://doi.org/10.1016/j.geoderma.2007.12.004
  48. Weindorf, D.C., Paulette, L. and Man, T. (2013) In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania. Environmental pollution, 182, 92-100. https://doi.org/10.1016/j.envpol.2013.07.008
  49. Yun, S.K. (1974) The Mineralization In The Dandyang-Susan Area. YONSEI Nonchong, 11(1), 325-337 (in Korean).

Cited by

  1. Characterization and Distribution of Clay Minerals in Corn Field Soils in Korea vol.49, pp.6, 2016, https://doi.org/10.7745/KJSSF.2016.49.6.813
  2. Spectral Responses of As and Pb Contamination in Tailings of a Hydrothermal Ore Deposit: A Case Study of Samgwang Mine, South Korea vol.10, pp.11, 2018, https://doi.org/10.3390/rs10111830
  3. Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of Reddish Brown Precipitation Occurring at Osip Stream Drainage, Gangwon-do vol.31, pp.2, 2018, https://doi.org/10.9727/jmsk.2018.31.2.75
  4. 미인폭포 수계에서 발생하는 백색침전물의 중금속 오염 및 분광학적 특성 vol.30, pp.1, 2017, https://doi.org/10.9727/jmsk.2016.30.1.31
  5. 아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험 vol.52, pp.2, 2019, https://doi.org/10.9719/eeg.2019.52.2.129
  6. 근적외선분광법을 이용한 동계사료작물 풀 사료의 수분함량 및 사료가치 평가 vol.39, pp.2, 2016, https://doi.org/10.5333/kgfs.2019.39.2.114
  7. 근적외선분광법을 이용한 사료용 벼의 사료가치 평가 vol.39, pp.4, 2019, https://doi.org/10.5333/kgfs.2019.39.4.292
  8. 폐석탄광 하류 밭토양 및 논토양의 중금속 함량과 광물조성에 따른 분광학적 특성 vol.53, pp.6, 2016, https://doi.org/10.9719/eeg.2020.53.6.743