• 제목/요약/키워드: Mindlin theory

검색결과 141건 처리시간 0.033초

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

판과 지반의 분리를 고려한 반무한 탄성지반상에 놓인 사각형 평판의 접촉응력 해석 (The Analysis of Contact Pressure of Plate on Elastic Half-Space Considering Local Separation between Plate and Half-Space)

  • 조현영;정진환;김성철;김호진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.73-79
    • /
    • 1997
  • It is one of classical problems in the elastic theory to analyze contact stresses between elastic bodies. Concrete pavements under traffic wheel loads can be considered as one of these typical Problems. In the paper, Mindlin plate theory is used to consider the transverse shear effect, 8-node isoparametric plate bending element is adopted in this study, and an elastic plate resting on tensionless elastic half-space is analyzed by finite element method. The Boussineq's solution of elastic half-space is used to evaluate the flexibility of foundation. To obtain the boundary of contact area, the flexibility matrix of foundation is modified after each cycle of analysis iteratively. A Numerical example is presented by using these method.

  • PDF

Analytical solutions for skewed thick plates subjected to transverse loading

  • Chun, Pang-Jo;Fu, Gongkang;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.549-571
    • /
    • 2011
  • This paper presents analytical solutions for skewed thick plates under transverse loading that have previously been unreported in the literature. The thick plate solution is obtained in a framework of an oblique coordinate system. The governing equation is first derived in the oblique coordinate system, and the solution is obtained using deflection and rotation as partial derivatives of a potential function developed in this research. The solution technique is applied to three illustrative application examples, and the results are compared with numerical solutions in the literature and those derived from the commercial finite element analysis package ANSYS 11. These results are in excellent agreement. The present solution may also be used to model skewed structures such as skewed bridges, to facilitate efficient routine design or evaluation analyses, and to form special elements for finite element analysis. At the same time, the analytical solution developed in this research could be used to develop methods to address post-buckling and dynamic problems.

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

脆性材料의 衝擊應答에 관한 硏究 (A Study on the Impulsive Response of Fragile Meterials Based on an Analytical Study of Impulsive Stresses in a Square Glass Plate)

  • 양동율;김기환;양인영
    • 대한기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.481-488
    • /
    • 1988
  • 본 연구에서는 판이론으로서는 해석할수 없는 집중충격하중의 작용점을 포함 한 유한판(정방형판)의 충격응력을 이론적으로 해석하는 방법을 제안하고저 하며 포성 재료로서 손쉽게 구할수 있고 파괴에 큰 에너지가 소요되지 않은 유리판을 대상으로 하여 3차원 동탄성이론을 이용하여 강구의 고속충돌에 의해서 유리판에 발생하는 충격 응력을 해석하였다. 또한 3차원 동탄성이론에서는 Laplace역변환이 곤난하므로, 고 속 Fourier변환의 알고리즘을 이용하였으며, 충격하중의 크기는 실측이 곤난하여 Lag- range의 고유판이론과 Hertz의 접촉이론으로부터 결정하였으며 단순지지된 정방형유리 판에 고속충격을 가하여 계측된 변형율변동과 본이론해석 결과와를 비교하여 응력해석 방법의 적용성을 명확히 하였다.

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.