• Title/Summary/Keyword: Mindlin plate

Search Result 179, Processing Time 0.022 seconds

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

Vibration Analysis of Mindlin Plates Using Polynomials Having the Property of Timoshenko Beam Functions (Timoshenko보함수 성질을 갖는 다항식을 이용한 Mindlin판유추 구조계의 진동해석)

  • J.H. Chung;T.Y. Chung;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.158-172
    • /
    • 1992
  • In ships and offshore structures, there are many local structures formed of thick plates and/or having the form of double wall panels. For the vibration analysis of such a kind of structures, Mindlin plate theory which includes the effects of shear deformation and rotary inertia is usually adopted. In this paper, the vibration and dynamic sensitivity analysis of Mindlin plates having the boundary conditions elastically restrained against rotation have been accomplished using the Rayleigh-Ritz method. Polynomials having the property of the Timoshenko beam functions are introduced and used as trial functions in the spatial representation of the deflection and rotations of cross sections in two directions of the plates. The results obtained by the introduced polynomials gave nearly the same numerical results as those by the Timoshenko beam functions with the remarkable reduction of computational efforts especially in the dynamic sensitivity analysis.

  • PDF

Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

  • Alile, Mohsen Rezvani;Foyouzat, Mohammad Ali;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for plates of higher thicknesses. Moreover, it is shown that CPT is unable to properly capture the variation of the plate thickness, thereby diminishing the accuracy as the thickness increases. The outcomes also indicate that the presence of a foundation contributes more to the dynamic response of thin plates in comparison to moderately thick plates. Furthermore, the findings suggest that the performance of the moving force approach for a moderately thick plate, in contrast to a thin plate, appears to be acceptable and it even provides a much better estimation in the presence of a foundation.

Thermal buckling analysis of thick anisotropic composite plates by finite strip method

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.473-484
    • /
    • 1999
  • In the present study, the thermal buckling analysis of thick anisotropic laminated composite plates is carried out using the finite strip method based on the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore, this theory yields improved results over the Mindlin plate theory and eliminates the need for shear correction factors in calculating the transverse shear stiffness. The critical temperatures of simply supported rectangular cross-ply and angle-ply composite laminates are calculated. The effects of several parameters, such as the aspect ratio, the length-to-thickness ratio, the number of plies, fibre orientation and stacking sequence, are investigated.

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.

Buckling Analysis of Rectangular Plates using an Enhanced 9-node Element

  • LEE, Sang Jin
    • Architectural research
    • /
    • v.18 no.3
    • /
    • pp.113-120
    • /
    • 2016
  • The stability and resistance of the plates under in-plane loading is crucial in the design of structures. For the assessment of structural stability, it is necessarily required to have accurate finite element technologies. Therefore, the enhanced 9-node plate (Q9-ANS) element is introduced for the linear buckling analysis of plate where the critical buckling load has to be determined. The Q9-ANS is developed with the Reissner-Mindlin (RM) assumptions which consider transverse shear deformation of the plate. Assumed shear strain is used to alleviate the shear locking phenomenon. Numerical examples are carried out to verify the performance of the Q9-ANS element in calculation of critical buckling load of the plates.

Mat Foundation Analysis Using Variable Node Plate Bending Element (변절점 굉판휨요소를 이용한 전면기초의 해석)

  • 최창근;김한수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

Development of 8-node Flat Shell Element for the Analysis of Folded Plate Structures (절판 구조물의 해석을 위한 8절점 평면 첼 요소의 개발)

  • 최창근;한인선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.234-241
    • /
    • 1999
  • In this study, an improved 8-node flat shell element is presented for the analysis of shell structure, by combining 8-node membrane element with drilling degree-of-freedom and 8-node plate bending element based on the recently presented technique. Firstly, 8-node membrane element designated as CLM8 is presented in this paper. The element has drilling degree-of.freedom in addition to transitional degree-of-freedom. Therefore the element possesses 3 degrees-of-freedom per each node which as well as the improvement of the element behavior, permits an easy connection to other element with rotational degree-of -freedom. Secondly. 8-node flat shell element was composed by adding 8-node Mindlin plate bending element to the membrane element. The behavior of the introduced plate bending element is further improved by combined use of nonconforming displacement modes, selectively reduced integration scheme and assumed shear strain fields. The element passes in the patch test, doesn't show spurious mechanism and doesn't produce shear locking phenomena. Finally, Numerical examples are presented to show the performance of flat shell element developed in the present study.

  • PDF

Isogeometric Analysis of Laminated Plates under Free Vibration

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2014
  • A plate element is developed by using isogeometric approach in order to determine natural frequencies of laminated composite plates. Reissner-Mindlin (RM) assumptions is adopted to consider the shear deformation and rotatory inertia effect. All terms required in isogeometric element formulation are consistently derived by using Non-uniform rational B-spline surface (NURBS) definition. Gauss quadrature rule is used to form the element stiffness matrix and separately Lobatto quadrature rule is used to calculate element mass matrix. The capability of the present plate element is demonstrated by using numerical examples. From numerical tests, the present isogeometric element produces reliable numerical results for both thin and thick plate situations.

Free Vibration Analysis of Stiffened Plates Using Polynomials Having the Property of Timoshenko Beam Functions (Timoshenko 보함수 성질을 갖는 다항식을 이용한 보강판의 교유진동 해석)

  • 김병희;김진형;조대승
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.623-628
    • /
    • 2004
  • In this study, the assumed-mode method using characteristic polynomials of Timoshenko beam is applied for the free vibration analysis of rectangular stiffened plates. The polynomial is derived considering the rotational constraint along the boundary edges of plate and the orthogonal relation of Timoshenko beam functions, which enables to simplify the free vibration analysis of plate structure having various boundary conditions. To verify the validity and effectiveness of the adopted method, numerical analysis for cross-stiffened plates were carried out and its results were compared with those obtained by the general purpose FEA software.

  • PDF