• Title/Summary/Keyword: Millimeter

Search Result 890, Processing Time 0.027 seconds

InGaAs Nano-HEMT Devices for Millimeter-wave MMICs

  • Kim, Sung-Won;Kim, Dae-Hyun;Yeon, Seong-Jin;Seo, Kwang-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.162-168
    • /
    • 2006
  • To fabricate nanometer scale InGaAs HEMTs, we have successfully developed various novel nano-patterning techniques, including sidewall-gate process and e-beam resist flowing method. The sidewall-gate process was developed to lessen the final line length, by means of the sequential procedure of dielectric re-deposition and etch-back. The e-beam resist flowing was effective to obtain fine line length, simply by applying thermal excitation to the semiconductor so that the achievable final line could be reduced by the dimension of the laterally migrated e-beam resist profile. Applying these methods to the device fabrication, we were able to succeed in making 30nm $In_{0.7}Ga_{0.3}As$ HEMTs with excellent $f_T$ of 426GHz. Based on nanometer scale InGaAs HEMT technology, several high performance millimeter-wave integrated circuits have been successfully fabricated, including 77GHz MMIC chipsets for automotive radar application.

A Low Phase-Noise Ka-Band Hybrid Frequency Synthesizer for Millimeter Wave Seeker (낮은 위상 잡음을 갖는 Ka 대역 밀리미터파 탐색기용 하이브리드 주파수 합성기)

  • Lim, Ju-Hyun;Han, Hae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1117-1124
    • /
    • 2011
  • In this paper, we implemented a Ka-band frequency synthesizer for millimeter wave seeker. We improved frequency synthesizer performance of phase noise, resolution and spurious using the DDS driven hybrid method The proposed frequency synthesizer has the bandwidth of 1 GHz, frequency switching time of below 9 ${\mu}s$, suppressed spurious level of below -68.9 dBc. phase noise of -113.58 dBc/Hz at offset 100 kHz and flatness of ${\pm}$0.7 dB.

Down Conversion Mixer for Millimeter Band (밀리피터파 대역 하향 변환 혼합기)

  • Ji, Hong-Gu;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1318-1323
    • /
    • 2010
  • A lot of demand for parts of millimeter wave band, as would be expected 57~63 GHz band down conversion mixer was designed and fabricated using IHP 0.25 um SiGe process. Designed and fabricated mixer was double balanced type and located reduced 3D balun at RF port and buffer amplifier at outport for suppression LO signal and conversion gain. Fabricated mixer measured conversion gain of 13.8 dB, $P1dB_{in}$ -17 dBm and 88 mA of current consumption characteristics, respectively.

Multiwavelength Millimeter Observations of Dense Cores in the L1641 Cloud

  • Choi, Minho;Kang, Miju;Lee, Jeong-Eun;Kang, Sung-Ju;Kwon, Jungmi;Cho, Jungyeon;Yoo, Hyunju;Park, Geumsook;Lee, Youngung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.55.3-55.3
    • /
    • 2017
  • The L1641 cloud in Orion is an active site of star formation. We mapped a square region of 60 arcmin by 60 arcmin in the continuum emission from 0.89 mm to 2.0 mm wavelength using MUSIC mounted on the Caltech Submillimeter Observatory 10.4 m telescope. Eight sources were detected in at least two wavelength bands, and all the detected emission comes from thermal dust continuum radiation of dense cloud cores. Their spectral energy distributions were characterized. The dust emissivity spectral index is beta = 1.3 on average, within the range of typical cores in nearby star-forming regions. Two cores, V380 Ori NE and HH 34 MMS, have unusually low emissivity index of beta = 0.3. These cores may contain millimeter-sized dust grains, which suggests that the lifetime of some dense cores can be much longer than the free-fall timescale.

  • PDF

Design of Wireless HD Image Transmission System with Bidirectional CEC Function (양방향 CEC 기능을 갖는 무선 고화질 이미지 전송 시스템의 설계)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • Nowadays it is necessary to replace electrical wires with another intelligent connection method because the consumers, who have much experience with mobile smart devices, are expecting easier and smarter connectivity in their home electronics such as wireless linking. In this paper a bidirectional CEC control scheme is newly proposed to expand the controllability from one to two way in a millimeter band image transmission system because two degree of freedom controllability presents more intelligent convenience in HDMI interface systems. Experimental study shows the feasibility of the proposed system as an advanced image transmission solution in millimeter band including an intelligent 2 DOF CEC interface with the performance result of 3.0 Gbps transmission band for 1080p full-HD image steaming.

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

Analysis of Response Characteristics of journal bearing on Millimeter-scale Micro Gas Turbine using Fluid numerical simulation (초소형 가스 터빈용 저널 베어링 내 유동장 수치해석을 통한 응답특성 분석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.387-391
    • /
    • 2011
  • Since MEMS based micro actuators or generating devices have high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas' turbine is one of the most powerful issue for replacing chemical batteries. However, since limiting of MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is proper bearing design which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study and design of journal bearing for 10mm diameter micro gas turbine is described Journal bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Repulsive force when there is radial displacement in bearing and returning time is calculated using steady and unsteady cases. Auto re-meshing technic is used for moving mesh unsteady cases which simulate displacement of axis and its movement. The simulation results are used for further design of micro gas turbine, and experiment will be done later.

  • PDF

Correlation Analysis of Transmission and Reflection Angle of Propagation Characteristics from 13-28 GHz

  • Kim, Yong Won;Jeong, Won Ho;Ju, Sang Lim;Kim, Kyung Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.69-73
    • /
    • 2016
  • In order to derive reliable propagation models for future millimeter-wave frequency indoor pico-cellular communications systems, accurate reflectivity data of building materials is necessary. The broad variety of building materials and construction codes makes accurate attenuation prediction very difficult without the support of specific construction data or measurements. This paper derives a transmission and reflection coefficient based on 13 GHz to 28 GHz measurement data. Transmission and reflection is measured by applying change in the reception angle of each building material, such as plasterboard. The transmission and reflection coefficient derived shows a correlation between frequency dependence and angle. As a result, as the reception angle is reduced, the reflected angle from the transmitter that could be received increases, showing that there is a correlation. In addition, the fundamental investigations carried out lay the foundation for radio channel-related research, which is essential for the development of future millimeter-wave communications systems.

Passive Millimeter-Wave Image Deblurring Using Adaptively Accelerated Maximum Entropy Method

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Kim, Yong-Hoon;Tiwary, U.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.414-417
    • /
    • 2007
  • In this paper we present an adaptive method for accelerating conventional Maximum Entropy Method (MEM) for restoration of Passive Millimeter-Wave (PMMW) image from its blurred and noisy version. MEM is nonlinear and its convergence is very slow. We present a new method to accelerate the MEM by using an exponent on the correction ratio. In this method the exponent is computed adaptively in each iteration, using first-order derivatives of deblurred image in previous two iterations. Using this exponent the accelerated MEM emphasizes speed at the beginning stages and stability at later stages. In accelerated MEM the non-negativity is automatically ensured and also conservation of flux without additional computation. Simulation study shows that the accelerated MEM gives better results in terms of RMSE, SNR, moreover, it takes only about 46% lesser iterations than conventional MEM. This is also confirmed by applying this algorithm on actual PMMW image captured by 94 GHz mechanically scanned radiometer.

  • PDF

A Monte Carlo Simulation Model Development for Electron Beam Lithography Process in the Multi-Layer Resists and Compound Semiconductor Substrates (다층 리지스트 및 화합물 반도체 기판 구조에서의 전자 빔 리소그래피 공정을 위한 몬테 카를로 시뮬레이션 모델 개발)

  • 손명식
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.182-192
    • /
    • 2003
  • A new Monte Carlo (MC) simulator for electron beam lithography process in the multi-layer resists and compound semiconductor substrates has been developed in order to fabricate and develop the high-speed PHEMT devices for millimeter-wave frequencies. For the accurate and efficient calculation of the transferred and deposited energy distribution to the multi-component and multi-layer targets by electron beams, we newly modeled for the multi-layer resists and heterogeneous multi-layer substrates. By this model, the T-shaped gate fabrication process by electron beam lithography in the PHEMT device has been simulated and analyzed. The simulation results are shown along with the SEM observations in the T-gate formation process, which verifies the new model in this paper.