• Title/Summary/Keyword: Millimeter

Search Result 882, Processing Time 0.027 seconds

Technical Research on Waveguide-to-Microstrip Transition Using an Inline Structure for Millimeter-Wave Seekers (Inline 구조를 이용한 밀리미터파 탐색기용 도파관-마이크로스트립 전이구조 기술 연구)

  • Park, Sang Woo;Lee, Dong Jae;Song, Sung Chan;Lee, Man Gyu;Kim, Yong Hwan;Kim, Jeong Ryul;Hong, Dong Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.54-59
    • /
    • 2019
  • In this paper, we report on the waveguide-to-microstrip transition with an inline structure for the millimeter band. The waveguide-to-microstrip transition comprises a probe, an inductive line, a ${\lambda}/4$ impedance transformer, and a 50-ohm microstrip line. For the transition design, we optimized the characteristic impedances and lengths of the component parts. The fabricated transition exhibits an insertion loss of 2.1 dB and an input/output return loss of below 13 dB at a millimeter band frequency of 94 GHz.

Thirty-two-tupling frequency millimeter-wave generation based on eight Mach-Zehnder modulators connected in parallel

  • Xinqiao Chen;Siyuan Dai;Zhihan Li;Wenyao Ba;Xu Chen
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.194-204
    • /
    • 2024
  • A new method is proposed to generate a 32-tupling frequency millimeter wave (MMW) with eight Mach-Zehnder modulators (MZMs) connected in parallel. Theoretical analyses and simulation experiments are conducted. The optical sideband suppression ratio (OSSR) of the obtained ±16th order optical sidebands are 61.54 dB and 61.42 dB, and the radio frequency spurious suppression ratios (RFSSRs) of the generated 32-tupling frequency MMW are 55.52 dB and 55.27 dB based on the theoretical analysis and simulation experiments, respectively; these outcomes verified the feasibility of the new method. The main parameters used to affect the stability of the generated signal are the modulation index and extinction ratio of MZM. Their effects on the OSSR and RFSSR of the generated signals are investigated when they deviate from their designed values. Compared with the other proposed methods for the generation of 32-tupling frequency MMW by MZM, our method has the best spectral purity and stability, and it is expected to have important MMW over fiber applications.

Development and Characterization of Mobile Transceiver for Millimeter-Wave Channel Sounding Measurement (밀리미터파 채널사운딩 측정을 위한 이동형 송수신 장치의 개발과 특성평가)

  • Jonguk Choi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.35-40
    • /
    • 2024
  • In this paper, the design, implementation, and analysis of a device capable of transmitting and receiving millimeter-wave signals and performing channel sounding measurements in atmospheric conditions at distances of up to approximately 10km outdoors are presented. The device is expected to be instrumental in studying the propagation characteristics of millimeter-wave frequencies. Utilizing data such as received power levels and power delay profiles (PDPs), comparisons with predicted values using path loss, K-factor, and other propagation models are facilitated. The mobile transceiver unit, integrated onto a vehicle platform, allows for flexible adjustment of transmitter and receiver positions, while synchronization issues with distance are mitigated using a rubidium atomic clock. Furthermore, automatic boresight alignment using scanning techniques is employed to locate the main sector of the antenna.

Novel 100 GHz Dual-Mode Stepped Impedance Resonator BPF Using micromachining Technology (마이크로 머시닝 기술을 이용한 새로운 구조의 100 GHz DMR bandpass Filter의 설계 및 제작)

  • Baek, Tae-Jong;Lee, Sang-Jin;Han, Min;Lim, Byeong-Ok;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.7-11
    • /
    • 2007
  • In this paper, we proposed the dual-mode stepped impedance ring resonator bandpass filter for MMIC (Microwave Monolithic Integrated Circuit) applications using the dielectric-supported air-gapped microstrip line (DAML). The ring resonator fabricated by surface micromachining technology. This filter consists of a DAML resonator layer and a CPW feed line. The DAML ring resonator is elevated with $10{\mu}m$ height from GaAs substrate surface. This bandpass filter is $1-{\lambda}g$ type stepped impedance ring resonator including dual-mode resonance. From the measurements, we obtained attenuation of over 15 dB and insertion loss of 2.65 dB at the center frequency of 97 GHz. Relative bandwidth is about 12 % at 97 GHz. Furthermore, the proposed bandpass filter is useful to integrate with conventional MMICs.

High-performance 94 GHz Single Balanced Mixer Based on 70 nm MHEMTs and DAML Technology (70 nm MHEMT와 DAML 기반의 하이브리드 링 커플러를 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim, Sung-Chan;Lim, Byoung-Ok;Beak, Tae-Jong;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.857-860
    • /
    • 2005
  • We reported 94 GHz, low conversion loss, and high isolation single balanced active-gate mixer based on 70 nm gate length InGaAs/InAlAs metamorphic high electron mobility transistors (MHEMTs). This mixer showed that the conversion loss and isolation characteristics were 2.5 ${\sim}$ 2.8 dB and under -30 dB, respectively, in the range of 93.65 ${\sim}$ 94.25 GHz. The low conversion loss of the mixer is mainly attributed to the high-performance of the MHEMTs exhibiting a maximum drain current density of 607 mA/mm, a extrinsic transconductance of 1015 mS/mm, a current gain cutoff frequency ($f_t$) of 330 GHz, and a maximum oscillation frequency ($f_{max}$) of 425 GHz. High isolation characteristics are due to hybrid ring coupler which adopted dielectric-supported air-gapped microstrip line (DAML) structure using surface micromachined technology. To our knowledge, these results are the best performance demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

  • PDF

A Study on PAPR reduction in OFDM WPAN system using Millimeter Wave (Millimeter Wave를 이용하는 OFDM WPAN 시스템에서 PAPR 감소에 관한연구)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • There has been lots of studies on communication systems using millimeter wave recently in many countries, specially in newly assigned 57GHz ~ 64GHz ISM band. Among those studies, IEEE 802.15.3c standard proposes OFDM (Orthogonal Frequency Division Multiplexing) systems for high data rate transmission support. But OFDM method has the PAPR (peak-to-Average Power Radio) problem The PAPR problem is to decline the performance of the transmission system due to signals distorted severely when passing through nonlinear components such as ADC/DAC and power amplifiers. In order to solve the problem of P APR, this paper suggests SSC (Sine Soft Clipping) and analyzes the PAPR, CCDF, PSD, BER by applying SAW(Surface Acoustic Wave) filter and power amplifiers to IEEE 802.15.3.c OFDM WPAN systems.

  • PDF

Design and fabrication of millimeter-wave GaAs Gunn diodes (밀리미터파 GaAs 건 다이오드의 설계 및 제작)

  • Kim, Mi-Ra;Lee, Seong-Dae;Chae, Yeon-Sik;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.45-51
    • /
    • 2007
  • We designed and fabricated the planar graded-gap injector GaAs Gm diodes with $1.6{\mu}m$ active length for operation at 94 GHz. The fabrication of the Gunn diode is based on MESA etching, Ohmic metalization, and overlay metalization. The measured negative resistance characteristics of the graded-gap injector GaAs Gunn diodes are examined for two different device structures changing the distance between the cathode and the anode electrodes. Also, we discuss the DC results under the forward and the reverse biases concerning the role of the graded-gap injector. It is shown that the structure having the shorter distance between the cathode and the anode electrode has higher peak current, higher breakdown voltage, and lower threshold voltage than those of the larger distance.

A Development of the High-Performance Signal Processor for the Compact Millimeter Wave Radar (소형 밀리미터파 레이더를 위한 고성능 신호처리기 개발)

  • Choi, Jin-Kyu;Ryu, Han-Chun;Park, Seung-Wook;Kim, Ji-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.161-167
    • /
    • 2017
  • Recently, small radar has been reduced in size and power consumption to cope with various operating environments. It also requires the development of a small millimeter wave radar with high range resolution to disable the system of target with a single strike. In this paper, we design and implement a signal processor that can be used in small millimeter wave radar. The signal processor for the small millmeter wave radar is designed with a digital IF(Intermediate Frequency) receiver and DFT(Discrete Fourier Transform) module capable of real time FFT operation for miniaturization and low power consumption. Also it was to leverage the FPGA(Field Programmable Gate Array) and DAC(Digital Analog Converter) as a means for correcting the distortion of signals that can occur in the receive path of the small millimeter wave radar to create a RF signal that is used by the system. Finally, we verified the signal processor presented through performance test

Millimeter-wave waveguide transducer using extended E-plane probe (연장된 E-plane 프로브를 이용한 밀리미터파 도파관 변환기)

  • Park, Woojin;Choe, Wonseok;Lee, Kookjoo;Kwon, Junbeom;Jeong, Jinho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.159-165
    • /
    • 2018
  • In this paper, a low-loss wideband waveguide transducer is proposed for millimeter-wave communication and radar applications. A conventional E-plane probe transducer is generally designed using thin and flexible substrate at millimeter-wave frequencies, considering the very small waveguide size. However, it results in serious performance degradation caused by the bending of the substrate. In order to alleviate this problem and provide a reliable performance, we propose an extended E-plane probe transducer where the probe substrate is extended to and fix ed in the slit area formed in the waveguide wall. It is fabricated using $127{\mu}m$-thick substrate with dielectric constant of 2.2. The measurement in the back-to-hack configuration shows the excellent insertion loss of 1.35 dB (${\pm}0.35dB$) including the loss of 3 cm-long thru waveguide and return loss better than 13.8 dB over entire W-band (75-110 GHz). Therefore, it can be effectively applied for millimeter-wave high-speed communications and high-sensitivity radars.

Combined Hybrid Beamforming and Spatial Multiplexing for Millimeter-Wave Massive MIMO Systems (밀리미터파 Massive MIMO 시스템을 위한 공간 다중화 및 하이브리드 빔 형성)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Nam-Il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.123-129
    • /
    • 2018
  • Recently, as required wireless communication traffic increase, millimeter wave mobile technologies that can secure broadband spectrum are gaining attention. However, the path loss is high in the millimeter wave channel. Massive MIMO system is being researched in which can complement the path loss by beamforming by equiped large-scale antenna at the base station. While legacy beamforming techniques have analog and digital methods, practical difficulties exist for application to massive MIMO systems in terms of system complexity and cost. Therefore, this paper studies a hybrid beamforming scheme for massive MIMO system in the millimeter wave band. Also this paper considers spatial multiplexing scheme to serve multi-users with multiple received antennas. Gains of the beamforming and the spatial multiplexing schemes are evaluated by analyzing the spectral efficiency.