DOI QR코드

DOI QR Code

Millimeter-wave waveguide transducer using extended E-plane probe

연장된 E-plane 프로브를 이용한 밀리미터파 도파관 변환기

  • Received : 2017.01.05
  • Accepted : 2018.02.09
  • Published : 2018.02.28

Abstract

In this paper, a low-loss wideband waveguide transducer is proposed for millimeter-wave communication and radar applications. A conventional E-plane probe transducer is generally designed using thin and flexible substrate at millimeter-wave frequencies, considering the very small waveguide size. However, it results in serious performance degradation caused by the bending of the substrate. In order to alleviate this problem and provide a reliable performance, we propose an extended E-plane probe transducer where the probe substrate is extended to and fix ed in the slit area formed in the waveguide wall. It is fabricated using $127{\mu}m$-thick substrate with dielectric constant of 2.2. The measurement in the back-to-hack configuration shows the excellent insertion loss of 1.35 dB (${\pm}0.35dB$) including the loss of 3 cm-long thru waveguide and return loss better than 13.8 dB over entire W-band (75-110 GHz). Therefore, it can be effectively applied for millimeter-wave high-speed communications and high-sensitivity radars.

논문은 밀리미터파 통신 및 레이더 응용을 위한 저손실 광대역 도파관 변환기를 제안한다. 기존 E-plane 프로브 변환기는 밀리미터파 대역에서 도파관 크기를 고려하여 매우 얇고 유연한 기판을 사용한다. 하지만, 이러한 기판은 휘어지기 쉬우며 이는 성능을 크게 저하시킨다. 이러한 문제점을 해결하기 위하여 변환기 프로브가 도파관 벽면 틈에 삽입되어 고정되는 연장된 E-plane 프로브 구조를 제안하고, 두께가 $127{\mu}m$이고 유전율 2.2인 기판을 사용하여 제작하였다. W-대역 (75-110 GHz)에서 측정된 백투백(back-to-back) 변환기의 삽입 손실은 3cm 길이 도파관을 포함하여 1.35 dB (${\pm}0.35dB$)이며, 반사 손실은 13.8 dB 이상으로 아주 우수한 특성을 보였다. 따라서, 제안된 변환기는 밀리미터파 초고속 흉신 또는 고감도 레이다에 효과적으로 활용될 수 있다.

Keywords

Acknowledgement

Supported by : LIG NEX1, IITP

References

  1. S. Lee, J. Joo, J. Choi, W. Kim, H. Kwon, S. Lee, Y. Kwon, J. Jeong, "W-band multichannel FMCW radar sensor with switching-TX antennas", IEEE Sensors J., Vol. 16, No. 14, pp. 5572-5582, July 2016. DO1: 10.1109/JSEN.2016.2567450
  2. Wan-Sik Kim, "Development of W-band Transceiver Module using Manufactured MMIC", The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 17, No. 2, pp. 233-237, Apr. 2017 https://doi.org/10.7236/JIIBC.2017.17.2.233
  3. B. Zhang, Y. Pi, J. Li, "Terahertz imaging radar with inverse aperture synthesis techniques: System structure, signal processing, and experiment result", IEEE Sensors J., Vol. 15, No. 1, pp. 290-299, Jan. 2015 DOI: 10.1109/JSEN.2014.2342495
  4. Z. D. Taylor, et al., "THz and mm-Wave sensing og corneal tissue water content : In vivo sensing and imaging results", IEEE Trans. THz Sci. Technol., Vol. 5, No. 2, pp. 184-196, Mar. 2015 DOI: 10.1109/TTHZ.2015.2392628
  5. D. M. Pozar, Microwave engineering, 4th ed., Wiley, New York, USA, 2012
  6. X. Ma, R. Xu, "A broadband W-band E-plane waveguide to microstrip probe transition," IEEE Asia Pacific Microwave Conference, pp. 2471-2274, Dec. 2008 DOI: 10.1109/APMC.2008.4958471
  7. W. Choe, J. Kim, J. Jeong, "Full H-band waveguide-to-coupled microstrip transition using dipole antenna with directors," IEICE Electron. Express, Vol. 14, No. 13, pp. 1-6, Jun. 2017 DOI: 10.1587/elex.14.20170487
  8. J. Jeong, D. Kim, S. Kim, Y. Kwon, "V-band High-Efficiency Broadband Power Combiner and Power-Combining module Using Double Antipodal Finline Transitions", Electron. Lett., Vol. 39, No. 4, pp. 378-379, Feb. 2003 DOI: 10.1049/el:20030255
  9. Hyeon-Cheol Ki, "A Study on Waveguide to Microstrip Antipodal Transition for 5 G Cellular Systems", The Journal of The Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 15, No. 4, pp. 185-190, Aug. 2015 http://dx.doi.org/10.7236/JIIBC.2015.15.4.185
  10. Y. Zhang, S. Shi, R. D. Martin, D. W. Prather, "Broadband SIW to waveguide transition in multilayer LCP substrates at W band", IEEE Microw. Compon. Lett., Vol. 27, No. 3, pp. 224-226, Mar. 2017 DOI : 10.1109/LMWC.2017.2661716
  11. Z. Hua, et al., "A full W band low noise amplifier module for millimeter wave applications", Journal of Semiconductors, Vol. 36, No. 9, pp. 095001-1-6, Sep. 2015 DOI: 10.1088/1674-4926/36/9/095001
  12. E. S. Li, G. X. Tong, D. C. Niu, "Full W band waveguide to microstrip transition with new E-plane probe", IEEE Microw. Compon. Lett., Vol. 23, No. 1, pp. 4-6, Jan 2013 DOI: 10.1109/LMWC.2012.2235176
  13. P. Zhou, P. Zheng, W. Yu, H. Sun, "Design of a W band low noise amplifier module with MMIC", Proc. Global Symp. Millimeter Waves, pp.58, May 2012 DOI: 10.1109/GSMM.2012.6313995
  14. K. Fujiwara, T. Kobayashi, "Low transmission loss, simple and broadband waveguide to microstrip line transducer in V-, E- and W-band", IEICE Electron. Express, Vol. 14, No. 15, pp. 1-10, July 2017 DOI: 10.1587/elex.14.20170631
  15. A. Tessmann, et al., "A 600 GHz low noise amplifier module", Proc. IEEE International Microwave Symposium, Jun. 2014 DOI: 10.1109/MWSYM.2014.6848456
  16. O. Donaldio, "G-band waveguide to microstrip transition for MMIC integration", Ph. D. Thesis, Dept. Science and Engineering, Glasgow Univ., Glasgow, Jan. 2012