• Title/Summary/Keyword: Milk Production Trait

Search Result 65, Processing Time 0.023 seconds

New composite traits for joint improvement of milk and fertility trait in Holstein dairy cow

  • Ghiasi, Heydar;Piwczynski, Dariusz;Sitkowska, Beata;Gonzalez-Recio, Oscar
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1303-1308
    • /
    • 2021
  • Objective: The objective of this study was to define a new composite trait for Holstein dairy cows and evaluate the possibility of joint improvement in milk and fertility traits. Methods: A data set consisting 35,882 fertility related records (days open [DO], calving interval [CI], and number of services per conception [NSC], and total milk yield in each lactation [TMY]) was collected from 1998 to 2016 in Polish Holstein-Friesian breed herds. In this study TMY, DO, CI, and lactation length of each cow was used to obtain composite milk and fertility traits (CMF). Results: Moderate heritability (0.15) was estimated for composite trait that was higher than heritability of female fertility related traits: DO 0.047, CI 0.042, and NSC 0.014, and slightly lower than heritability of TMY 0.19. Favourable genetic correlations (-0.87) were estimated between CMF with TMY. Spearman rank correlation coefficients between breeding value of CMF with DO, CI, and TMY were high (>0.94) but with NSC were moderate (0.64). Selection on CMF caused favourable correlated genetic gains for DO, CI, and TMY. Different selection indices with different emphasis on fertility and milk production were constructed. The amount of correlated genetic gains obtained for DO and total milk production according to selection in CMF were higher than of genetic gains obtained for DO and TMY in selection indices with different emphasis on milk and fertility. Conclusion: The animal selection only based on a composite trait - CMF proposed in current study would simultaneously lead to favourable genetic gains for both milk and fertility related traits. In this situation CMF introduced in current study can be used to overcome to limitations of selection index and CMF could be useful for countries that have problems in recording traits, especially functional traits.

Heritability Estimates under Single and Multi-Trait Animal Models in Murrah Buffaloes

  • Jain, A.;Sadana, D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.575-579
    • /
    • 2000
  • First lactation records of 683 Murrah buffaloes maintained at NDRI, Karnal which were progeny of 84 sires used for comparing the heritability estimates of age at first calving, first lactation milk yield and first service period under single and multiple trait models using restricted maximum likelihood (REML) method of estimation under an individual animal model. The results indicated that the heritability estimates may vary under single and multiple trait models depending upon the magnitude of genetic and environmental correlation among the traits being considered. Therefore, a single or multiple trait model is recommended for estimation of variance components depending upon the goal of breeding programme. However, there may not be any advantage of considering a trait with zero or near zero heritability and having no or very low genetic correlation with other traits in the model. Lower heritability estimates of part lactation yield (120-day milk yield) implied that there may not be any advantage of considering this trait in place of actual 305-day milk yield, whereas, comparable heritability estimates of predicted 305-day milk yield suggested that it could be used for sire evaluation to reduce the cost of milk recording under field conditions.

Effects of k-Casein Variants on Milk Yield and Composition in Dairy Cattle

  • Chung, Eui-Ryong;Chung, Ku-Young
    • Food Science of Animal Resources
    • /
    • v.25 no.3
    • /
    • pp.328-332
    • /
    • 2005
  • The effect of k-casein (k-CN) variant on milk production traits (milk yield, fat yield, protein yield, fat percentage and protein percentage) was estimated for 568 Holstein cows in the first lactation. The k-CN valiant were determined by PCR-RFLP (restriction fragment length polymorphism) technique at the DNA level. Single trait linear model was used for the statistical analysis of the data. Result of this study indicated that k-CN variant affected significantly milk yield (P<0.05) and protein yield (P<0.01). Animals with the BB variant produced 622kg milk more and had protein yield higher by 32kg compared with animals with the AA variant No associations between the k-CN variants and other milk production trait were found. Therefore, milk and protein yield may be improved through milk protein typing by increasing the frequencies of k-CN B variant in dairy cattle population. In cheese making, it will be also preferable to have milk with the B variant of k-CN, which gives higher yield having a better quality than the A variant milk.

Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models

  • Ayalew, Wondossen;Aliy, Mohammed;Negussie, Enyew
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1550-1556
    • /
    • 2017
  • Objective: This study estimated the genetic parameters for productive and reproductive traits. Methods: The data included production and reproduction records of animals that have calved between 1979 and 2013. The genetic parameters were estimated using multivariate mixed models (DMU) package, fitting univariate and multivariate mixed models with average information restricted maximum likelihood algorithm. Results: The estimates of heritability for milk production traits from the first three lactation records were $0.03{\pm}0.03$ for lactation length (LL), $0.17{\pm}0.04$ for lactation milk yield (LMY), and $0.15{\pm}0.04$ for 305 days milk yield (305-d MY). For reproductive traits the heritability estimates were, $0.09{\pm}0.03$ for days open (DO), $0.11{\pm}0.04$ for calving interval (CI), and $0.47{\pm}0.06$ for age at first calving (AFC). The repeatability estimates for production traits were $0.12{\pm}0.02$, for LL, $0.39{\pm}0.02$ for LMY, and $0.25{\pm}0.02$ for 305-d MY. For reproductive traits the estimates of repeatability were $0.19{\pm}0.02$ for DO, and to $0.23{\pm}0.02$ for CI. The phenotypic correlations between production and reproduction traits ranged from $0.08{\pm}0.04$ for LL and AFC to $0.42{\pm}0.02$ for LL and DO. The genetic correlation among production traits were generally high (>0.7) and between reproductive traits the estimates ranged from $0.06{\pm}0.13$ for AFC and DO to $0.99{\pm}0.01$ between CI and DO. Genetic correlations of productive traits with reproductive traits were ranged from -0.02 to 0.99. Conclusion: The high heritability estimates observed for AFC indicated that reasonable genetic improvement for this trait might be possible through selection. The $h^2$ and r estimates for reproductive traits were slightly different from single versus multi-trait analyses of reproductive traits with production traits. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended.

Genetic Relationship between Milk Production, Calving Ease and Days Open at First Parity in Holstein Cows

  • Lee, D.H.;Han, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.153-158
    • /
    • 2004
  • Data containing 14,188 lactation and reproductive records of Korean Holstein cows at first parity distributed across 3,734 herd-year-season groups were analyzed to get genetic (co)variance estimates for milk yield, fat yield, calving ease, and days open. Milk and Fat yields were adjusted to 305 d. Heritabilities and genetic correlations were estimated in two different animal models on which were included direct genetic effects (Model 1) and direct+maternal genetic effects (Model 2) using REML algorithms. Milk and fat yields were affected by age at first calving as linear and quadratic. Heritability estimates of direct effects were 0.25 for milk yield, 0.17 for fat yield, 0.03 for calving ease and 0.03 for days open in Model 2. These estimates for maternal effects were 0.05, 0.08, 0.04 and less than 0.01 for each corresponding trait. Milk productions at first lactation were to show genetically favorable correlation with calving ease and days open for direct genetic effects (-0.24 - -0.11). Moreover, calving ease was correlated with days open of 0.30 for direct genetic effects. Correlations between direct and maternal effects for each trait were negatively correlated (-0.63 - -0.32). This study suggested that maternal additive genetic variance would be not ignorable for genetic evaluation of milk production as well as reproductive traits such as calving ease and days open at first parity. Furthermore, difficult calving would genetically influence the next conception.

Economic Values for Dairy Sheep Breeds in Slovakia

  • Krupova, Zuzana;Wolfova, M.;Wolf, J.;Oravcova, M.;Margetin, M.;Peskovicova, D.;Krupa, E.;Dano, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.12
    • /
    • pp.1693-1702
    • /
    • 2009
  • Economic values of 14 production and functional traits for two Slovak dairy sheep breeds (Improved Valachian and Tsigai) were calculated. Semi-extensive production systems with one lambing per year were simulated using a bio-economic deterministic computer model. The marginal economic value of a trait was defined as the partial derivative of the profit function with respect to that trait. The relative economic value expressed the percentage proportion of standardized economic value (marginal economic value${\times}$genetic standard deviation) of a trait in the sum of the absolute values of the standardized economic values over all traits. Milk yield was of highest relative importance (26% and 32% in Improved Valachian and Tsigai) followed by productive lifetime and conception rate of ewes (16% and 15% in Improved Valachian and Tsigai, in both traits). Conception rate of female lambs and litter size had nearly the same relative economic importance in both breeds (9% to 11%). Survival rate of lambs at lambing and till weaning reached slightly lower economic values (4% to 7%). The economic importance of all remaining traits was less than 4%.

Efficacy of Auxiliary Traits in Estimation of Breeding Value of Sires for Milk Production

  • Sahana, G.;Gurnani, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.511-514
    • /
    • 1999
  • Data pertaining to 1111 first lactation performance record of Karan Fries (Holstein-Friesian $\times$ Zebu) cows spread over a period of 21 years and sired by 72 bulls were used to examine the efficiency of sire indices for lactation milk production using auxiliary traits. First lactation length, first service period, first calving interval, first dry period and age at first calving were considered as auxiliary traits. The efficiency of this method was compared with simple daughter average index (D), contemporary comparison method (CC), least-square method (LSQ), simplified regressed least-squares method (SRLS) and best linear unbiased prediction (BLUP) for lactation milk production. The relative efficiency of sire evaluation methods using one auxiliary trait was lower (24.2-32.8%) in comparison to CC method, the most efficient method observed in this study. Use of two auxiliary traits at a time did not further improve the efficiency. The auxiliary sire indices discriminate better among bulls as the range of breeding values were higher in these methods in comparison to conventional sire evaluation methods. The rank correlation between breeding values estimated using auxiliary traits were high (0.77-0.78) with CC method. The rank correlation among auxiliary sire indices ranged from 0.98 to 0.99, indicating similar ranking of sire for breeding values of milk production in all the auxiliary sire indices.

Association of Beta-lactoglobulin Polymorphism with Milk Production Traits in Cattle

  • Badola, S.;Bhattacharya, T.K.;Biswas, T.K.;Kumar, Pushpendra;Sharma, Arjava
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1560-1564
    • /
    • 2003
  • The study was carried out in Sahiwal, Holstein Friesian, Jersey and crossbred cattle to find out the effect of genotype of beta-lactoglobulin gene on milk production traits. The polymorphism at beta-lactoglobulin gene was identified by conducting PCRRFLP studies. A 398 bp fragment of the gene was amplified and digested with Hae III restriction enzyme. The two alleles A and B and three genotypes AA, AB and BB were identified in all cattle breeds. The frequency of B allele was comparatively higher than that of A allele. The AA genotype produced significantly higher milk yield in Sahiwal cattle whereas BB genotype yielded higher milk in Holstein friesian cattle. In other cattle breeds the genotypic effect was non-significant. In conclusion it may be stated that the genotype with significantly higher milk yield may be favoured in the farm along with other conventional selection criteria to enhance the milk production of animals.

Genetic study of quantitative traits supports the use of Guzera as dual-purpose cattle

  • Carrara, Eula Regina;Peixoto, Maria Gabriela Campolina Diniz;Veroneze, Renata;Silva, Fabyano Fonseca e;Ramos, Pedro Vital Brasil;Bruneli, Frank Angelo Tomita;Zadra, Lenira El Faro;Ventura, Henrique Torres;Josahkian, Luiz Antonio;Lopes, Paulo Savio
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.955-963
    • /
    • 2022
  • Objective: The aim of this study was to estimate genetic parameters for 305-day cumulative milk yield and components, growth, and reproductive traits in Guzerá cattle. Methods: The evaluated traits were 305-day first-lactation cumulative yields (kg) of milk (MY305), fat (FY305), protein (PY305), lactose (LY305), and total solids (SY305); age at first calving (AFC) in days; adjusted scrotal perimeter (cm) at the ages of 365 (SP365) and 450 (SP450) days; and adjusted body weight (kg) at the ages of 210 (W210), 365 (W365), and 450 (W450) days. The (co)variance components were estimated using the restricted maximum likelihood method for single-trait, bi-trait and tri-trait analyses. Contemporary groups and additive genetic effects were included in the general mixed model. Maternal genetic and permanent environmental effects were also included for W210. Results: The direct heritability estimates ranged from 0.16 (W210) to 0.32 (MY305). The maternal heritability estimate for W210 was 0.03. Genetic correlation estimates among milk production traits and growth traits ranged from 0.92 to 0.99 and from 0.92 to 0.99, respectively. For milk production and growth traits, the genetic correlations ranged from 0.33 to 0.56. The genetic correlations among AFC and all other traits were negative (-0.43 to -0.27). Scrotal perimeter traits and body weights showed genetic correlations ranging from 0.41 to 0.46, and scrotal perimeter and milk production traits showed genetic correlations ranging from 0.11 to 0.30. The phenotypic correlations were similar in direction (same sign) and lower than the corresponding genetic correlations. Conclusion: These results suggest the viability and potential of joint selection for dairy and beef traits in Guzerá cattle, taking into account reproductive traits.

Genetic parameters for somatic cell score, milk yield and type traits in Nigerian Dwarf goats

  • Valencia-Posadas, Mauricio;Lechuga-Arana, Alma Arianna;Avila-Ramos, Fidel;Shepard, Lisa;Montaldo, Hugo H.
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.377-384
    • /
    • 2022
  • Objective: This study was conducted to estimate multi-trait genetic parameters for somatic cell score (SCS), milk yield and type traits in Nigerian Dwarf (ND) goats from the United States. Methods: Data from 1,041 ND goats in the United States with kiddings in 95 herds were used to estimate multi-trait genetic parameters for SCS, milk (MILK), fat (FAT), and protein (PROT) yields, and 14 type traits. An 18-trait mixed linear animal model for lactation mean SCS (Log2), MILK, FAT, PROT, and 14 type traits was applied. A factor analytic approach (FA1) in ASReml software was used to obtain convergence. Results: Averages for SCS were low (2.85±1.29 Log2), and were 314±110.6, 20.9±7.4, and 14±4.9 kg, respectively, for MILK, FAT, and PROT. Heritabilities for SCS, MILK, FAT, and PROT were 0.32, 0.16, 0.16, and 0.10, respectively. The highest heritabilities for type traits were for stature (0.72), teat diameter (0.49), and rump width (0.48), and the lowest estimates were for dairyness (0.003) and medial suspensory ligament (0.03). Genetic correlations of SCS with MILK, FAT, and PROT were positive but low (0.25, 0.18, and 0.23, respectively). Genetic and phenotypic correlations between MILK, FAT, and PROT were high and positive (≥0.66). Absolute values of genetic correlations involving SCS with type traits were generally low or no different from zero. Most of the phenotypic correlations involving SCS with type traits were low. No serious unfavorable genetic correlations between milk yield traits and SCS or between milk yield traits or SCS and type traits were found. Conclusion: Genetic variation exists in the ND breed for most studied traits. The development of selection programs based on these estimates may help accelerate favorable multi-trait genetic changes in this breed.