• 제목/요약/키워드: Milk Diets

검색결과 333건 처리시간 0.03초

영유아 급성 설사의 영양 공급: 탈수 치료 후 연령별 식이요법을 중심으로 (Nutritional Support for Acute Diarrhea in Children: Focused on Age-appropriate Diet Therapy after Rehydration)

  • 추미애;최병호
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제12권sup1호
    • /
    • pp.53-61
    • /
    • 2009
  • The mainstay in the management of mild to moderately dehydrated children is fast rehydration by using hypotonic ORS (oral rehydration solution) and complete resumption of normal diet, including lactose-containing formula after 4 hours rehydration. Since the majority of young children with uncomplicated acute diarrhea will tolerate large amounts of undiluted non-human milk, withholding food and milk from children during diarrhea is not recommended anymore, regarding time to resolution and diarrhea control. In addition, routine dilution of milk and routine use of lactose-free formula are not necessary after fast ORS therapy. Breastfed infants and children fed with solid foods may safely continue receiving their usual diets during diarrhea instead of gradual reintroduction of feeding. However, young infants or children with severe diarrhea or malnutrition should be carefully treated under supervision if fed with lactose containing, non-human milk exclusively.

Effect of Different Rumen-degradable Carbohydrates on Rumen Fermentation, Nitrogen Metabolism and Lactation Performance of Holstein Dairy Cows

  • Khezri, A.;Rezayazdi, K.;Mesgaran, M. Danesh;Moradi-Sharbabk, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.651-658
    • /
    • 2009
  • Four multiparous lactating Holstein cows fitted with rumen cannulae were fed diets varying in the amount and source of rumen-degradable carbohydrates (starch vs. sucrose) to examine their effects on rumen fermentation, nitrogen metabolism and lactation performance. A $4{\times}4$ Latin square with four diets and four periods of 28 days each was employed. Corn starch and sucrose were added to diets and corn starch was replaced with sucrose at 0 (0 S), 2.5 (2.5 S), 5.0 (5.0 S) 7.5% (7.5 S) of diet dry matter in a total mixed ration (TMR) containing 60% concentrate and 40% forage (DM basis). Replacing corn starch with sucrose did not affect (p>0.05) ruminal pH which averaged 6.41, but the ruminal pH for 7.5 S decreased more rapidly at 2 h after morning feeding compared with other treatments. Sucrose reduced ($p{\leq}0.05$) ruminal $NH_3-N$ concentration (13.90 vs. 17.09 mg/dl) but did not affect peptide-N concentration. There was no dietary effect on total volatile fatty acids (110.53 mmol/L) or the acetate to propionate ratio (2.72). No differences (p>0.05) in molar proportion of most of the individual VFA were found among diets, except for the molar proportion of butyrate that was increased ($p{\leq}0.05$) with the inclusion of sucrose. Total branched chain volatile fatty acids tended to increase ($p{\geq}0.051$) for the control treatment (0 S) compared with the 7.5 S treatment. Dry matter intake, body weight changes and digestibility of DM, OM, CP, NDF and ADF were not affected by treatments. Sucrose inclusion in the total mixed ration did not affect milk yield, but increased milk fat and total solid percentage ($p{\leq}0.05$). Sucrose tended ($p{\geq}0.063$) to increase milk protein percentage (3.28 vs. 3.05) and reduced ($p{\leq}0.05$) milk urea nitrogen concentration (12.75 vs. 15.48 mg/dl), suggesting a more efficient utilization of the rapidly available nitrogen components in the diet and hence improving nitrogen metabolism in the rumen.

Effects of Black Sugar Supplementation on Dry Matter Intake, Milk Yield, and Milk Composition in Holstein Dairy Cow

  • Seng, Tongheng;Lee, Sang Moo;Kim, Eun Joong
    • 한국초지조사료학회지
    • /
    • 제33권3호
    • /
    • pp.213-218
    • /
    • 2013
  • This study was conducted to investigate the effects of supplementing additional sucrose, in the form of black sugar (BS), into the diet of Holstein dairy cows on dry matter intake (DMI), milk yield, and milk composition. Eight Holstein dairy cows ($741{\pm}65.8kg$ body weight) were divided into two groups, including the control and BS groups. Animals in the control group were offered a total mixed ration (TMR) ad libitum, and the BS group was offered TMR with 300 g of BS/head/d. After two weeks of adaptation period, the animal performance, including DMI, milk yield and milk composition, was measured. Cows supplemented with BS appeared to consume more feed than that by the controls (i.e., 17.08 and 18.28 kg/d for the control and BS groups, respectively). However, there were no significant differences between treatments. Milk yield or milk composition, such as milk fat, milk protein, lactose, solids-non-fat, total solids and pH, did not differ between treatments. However, there was a significant difference (p<0.05) in the concentration of milk urea nitrogen (MUN). The MUN concentration of the BS group was approximately 15% lower than that of the control group (i.e., 18.75 vs. 16.05 mg/dL for the control and BS groups, respectively), which suggests improved nitrogen metabolism in the animals. The somatic cell count was numerically lower in the cows of the BS group compared to those in the control group. However, a significant difference was not noted due to the substantial amount of variation among cows. In terms of the trace mineral composition for milk, the concentration of Cu from BS animals was higher (p<0.05) than that of the control animals. In summary, supplementing the diets of dairy cows with BS marginally affected animal performance and improved nitrogen metabolism. The level of supplementation and other factors, such as animal variation were discussed.

Evaluation of Coarsely Ground Wheat as a Replacement for Ground Corn in the Diets of Lactating Dairy Cows

  • Guo, Y.Q.;Zou, Y.;Cao, Z.J.;Xu, X.F.;Yang, Z.S.;Li, Shengli
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권7호
    • /
    • pp.961-970
    • /
    • 2013
  • Eight multiparous Holstein cows ($569{\pm}47$ kg of BW; $84{\pm}17$ DIM) were used to evaluate the effects of different levels of coarsely ground wheat (CGW) as replacements for ground corn (GC) in diets on feed intake and digestion, ruminal fermentation, lactation performance, and plasma metabolites profiles in dairy cows. The cows were settled in a replicated $4{\times}4$ Latin square design with 3-wk treatment periods; four cows in one of the replicates were fitted with rumen cannulas. The four diets contained 0, 9.6, 19.2, and 28.8% CGW and 27.9, 19.2, 9.6, and 0% GC on dry matter (DM) basis, respectively. Increasing dietary levels of CGW, daily DM intake tended to increase quadratically (p = 0.07); however, apparent digestibility of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were significantly decreased (p<0.01) in cows fed the 28.8% CGW diets. Ruminal pH remained in the normal physiological range for all dietary treatments at all times, except for the 28.8% CGW diets at 6 h after feeding; moreover, increasing dietary levels of CGW, the daily mean ruminal pH decreased linearly (p = 0.01). Increasing the dietary levels of CGW resulted in a linear increase in ruminal propionate (p<0.01) and ammonia nitrogen ($NH_3$-N) (p = 0.06) concentration, while ruminal acetate: propionate decreased linearly (p = 0.03) in cows fed the 28.8% CGW diets. Milk production was not affected by diets; however, percentage and yield of milk fat decreased linearly (p = 0.02) when the level of CGW was increased. With increasing levels of dietary CGW, concentrations of plasma beta-hydroxybutyric acid (BHBA) (p = 0.07) and cholesterol (p<0.01) decreased linearly, whereas plasma glucose (p = 0.08), insulin (p = 0.02) and urea nitrogen (p = 0.02) increased linearly at 6 h after the morning feeding. Our results indicate that CGW is a suitable substitute for GC in the diets of dairy cows and that it may be included up to a level of 19.2% of DM without adverse effects on feed intake and digestion, ruminal fermentation, lactation performance, and plasma metabolites if the cows are fed fiber-sufficient diets.

In vitro and Lactation Responses in Mid-lactating Dairy Cows Fed Protected Amino Acids and Fat

  • Nam, I.S.;Choi, J.H.;Seo, K.M.;Ahn, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1705-1711
    • /
    • 2014
  • The objective of this study was to evaluate the effect of ruminally protected amino acids (RPAAs) and ruminally protected fat (RPF) supplementation on ruminal fermentation characteristics (in vitro) and milk yield and milk composition (in vivo). Fourteen mid-lactating Holstein dairy cows (mean weight $653{\pm}62.59kg$) were divided into two groups according to mean milk yield and number of days of postpartum. The cows were then fed a basal diet during adaptation (2 wk) and experimental diets during the treatment period (6 wk). Dietary treatments were i) a basal diet (control) and ii) basal diet containing 50 g of RPAAs (lysine and methionine, 3:1 ratio) and 50 g of RPF. In rumen fermentation trail (in vitro), RPAAs and RPF supplementation had no influence on the ruminal pH, dry matter digestibility, total volatile fatty acid production and ammonia-N concentration. In feeding trial (in vivo), milk yield (p<0.001), 4% fat corrected milk (p<0.05), milk fat (p<0.05), milk protein (p<0.001), and milk urea nitrogen (p<0.05) were greater in cows fed RPAAs and RPF than the corresponding values in the control group. With an index against as 0%, the rates of decrease in milk yield and milk protein were lower in RPAAs and RPF treated diet than those of basal diet group (p<0.05). In conclusion, diet supplemented with RPAAs and RPF can improve milk yield and milk composition without negatively affecting ruminal functions in Holstein dairy cows at mid-lactating.

PRODUCTION RESPONSES OF CROSSBRED HOLSTEIN MILKING COWS FED UREA-TREATED RICE STRAW AT THREE DIFFERENT FIBER LEVELS

  • Promma, S.;Jeenklum, P.;Indratula, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권4호
    • /
    • pp.509-514
    • /
    • 1993
  • The experiment was conducted to determine the effect of different fiber levels on milk production of crossbred Holstein milking cows fed urea-treated rice straw (UTS) as a roughage. Eight cows were allotted into 2 squares of 4 cows each with 4 treatments by a balanced design. The treatments were 17%, 22%, and 24% crude fiber (CF) diets and Thai feeding system (free choice of roughage and 1 kg of concentrates/2 kg of milk) as a control. Body weight change was not significantly different among the treatments during the experiment. Milk production (4% FCM) and milk protein content wee not different among the treatments, but milk fat content was low in the 17% CF group and high in the control group. Cows fed the 17% CF diet consumed less UTS and more concentrates than the others, and consequently total DM intake was not different among the treatments. The feed conversion ratio was significantly higher in the control. Feed cost per kg milk was lowest in the control and highest in the 17% CF diet. The fiber content of the diet would be more than 17%, preferably 22-24% for normally producing Thai crossbred Holstein cows when the UTS was fed as a main roughage source.

Effects of Varying Levels of Whole Cottonseed on Blood, Milk and Rumen Parameters of Dairy Cows

  • Oguz, F. Karakas;Oguz, M.N.;Buyukoglu, T.;Sahinduran, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권6호
    • /
    • pp.852-856
    • /
    • 2006
  • Four lactating Holstein cows were used in a $4{\times}4$ Latin-square design to determine the effects of various levels of whole cottonseed (WCS) in diets on parameters including milk (yield and fat content), rumen fluid (pH, ammonia and TVFA) and blood (${\beta}$-carotene, vit. A, vit. E, urea, $NH_3$, Ca, P and Mg levels). Cows consumed 0, 1, 2 or 3 kg WCS per day. No significant differences were observed among the groups on analysed parameters except plasma vitamin E concentration. In addition, when the amount of cottonseed was increased, milk yield and milk fat content also tended to increase but this increase was not statistically significant. In conclusion, feeding of WCS up to 3 kg per day with ad libitum maize silage did not cause negative effects on milk yield, milk fat and blood vitamin levels in the short term in dairy cows.

Effects of Replacement of Concentrate Mixture by Broccoli Byproducts on Lactating Performance in Dairy Cows

  • Yi, X.W.;Yang, F.;Liu, J.X.;Wang, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권10호
    • /
    • pp.1449-1453
    • /
    • 2015
  • The objective of the present study was to determine the effects of feeding pelletized broccoli byproducts (PBB) on milk yield and milk composition in dairy cows. In Trial 1, an in vitro gas test determined the optimal replacement level of PBB in a concentrate mixture in a mixed substrate with Chinese wild ryegrass hay (50:50, w/w) at levels of 0, 10%, 20%, 30%, or 40% (dry matter basis). When the concentrate was replaced by PBB at a level of 20%, no adverse effects were found on the gas volume or its rate constant during ruminal fermentation. In trial 2, 24 lactating cows (days in milk = $170.4{\pm}35$; milk yield = $30{\pm}3kg/d$; body weight = $580{\pm}13kg$) were divided into 12 blocks based on day in milk and milk yield and randomly allocated to two dietary treatments: a basic diet with or without PBB replacing 20% of the concentrate mixture. The feeding trial lasted for 56 days; the first week allowed for adaptation to the diet. The milk composition was analyzed once a week. No significant difference in milk yield was observed between the two groups (23.5 vs 24.2 kg). A significant increase was found in milk fat content in the PBB group (p<0.05). Inclusion of PBB did not affect milk protein, lactose, total solids or solids-not-fat (p>0.05). These results indicated that PBB could be included in dairy cattle diets at a suitable level to replace concentrate mixture without any adverse effects on dairy performance.

The Nutritive Value of Live Yeast Culture (Saccharomyces cerevisiae) and Its Effect on Milk Yield, Milk Composition and Some Blood Parameters of Dairy Cows

  • Yalcin, Sakine;Yalcin, Suzan;Can, Plnar;Gurdal, Arif O.;Bagci, Cemalettin;Eltan, Onder
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권10호
    • /
    • pp.1377-1385
    • /
    • 2011
  • This study was conducted to determine the nutritive value of live yeast culture (RumiSacc, Saccharomyces cerevisiae) and to investigate its effects on milk yield, milk composition and some blood parameters in lactating cows. Six multiparous Holstein cows were allocated to two groups of three cows and assigned randomly to one of two diets in a cross-over experiment. Daily 50 g RumiSacc was top dressed at the p.m. feeding for the treatment group. RumiSacc supplied a high protein and energy with high organic matter digestibility values (83.35%) determined by in vitro enzymatic analysis. Yeast culture supplementation significantly increased milk yield, tended to increase fat yield, protein yield and lactose yield of milk. Methylated fatty acid level of 18:3 (n-3) in milk fat was increased by yeast culture supplementation. The concentrations of methionine, phenyalanine, tyrosine, tryptophan and taurine were significantly increased with dietary inclusion of yeast culture. Live yeast culture supplementation did not affect other performance characteristics, milk quality characteristics and blood parameters. As a conclusion live yeast culture (RumiSacc, Saccharomyces cerevisiae) had high nutritive value and positive effects on milk production and some milk quality characteristics in lactating cows under field conditions.

Effect of Replacing Corn and Wheat Bran With Soyhulls in Lactation Cow Diets on In Situ Digestion Characteristics of Dietary Dry Matter and Fiber and Lactation Performance

  • Meng, Qingxiang;Lu, Lin;Min, Xiaomei;McKinnon, P.J.;Xiong, Yiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권12호
    • /
    • pp.1691-1698
    • /
    • 2000
  • An in situ digestion trial (Experiment 1) and a lactation trial (Experiment 2) were conducted to determine the effects of replacing corn and wheat bran with soyhulls (SH) in lactating dairy cow diets on the extent and kinetics of digestion of DM and NDF, and lactation performance. In experiment 1, five mixed feeds consisting of mixed concentrate and roughages (50:50 on a DM basis) were formulated on isonitrogenous and isoenergetic bases to produce five levels (0, 25, 50, 75 and 100%) of SH replacement for corn and wheat bran. SH had high in situ digestion (92 and 89% for potentially digestible DM and NDF) and fairly fast digestion rate (7.2 and 6.3 %/h for DM and NDF). Increasing level of SH replacement resulted in increased NDF digestibility (linear, p=0.001-0.04) and similar DM digestibility (beyond 12 h incubation, p=0.10-0.41). As level of SH replacement increased, percentage of slowly digestible fraction (b) of DM increased (linear, p=0.03), percentage of rapidly digestible fraction (a) of DM tended to decrease (linear, p=0.14), and DM digestion lag time tended to be longer (linear, p=0.13). Percentage of potentially digestible fraction (a+b) and digestion rate (c) of slowly digestible fraction of dietary DM remained unaltered (p=0.36-0.90) with increasing SH in the diet. Increasing level of SH for replacing corn and wheat bran in the diet resulted in increases in percentages of b (quadratic, p<0.001), a (linear, p=0.08), a+b (quadratic, p=0.001) and a tendency to increase in c for NDF (linear, p<0.19). It was also observed that there was a satisfactory fit of a non-linear regression model to NDF digestion data ($R^2=0.986-0.998$), but a relatively poor fit of the model to DM digestion data ($R^2=0.915-0.968$). In experiment 2, 42 lactating Holstein cows were used in a randomized complete block design. SH replaced corn and wheat bran in mixed concentrates at 0, 25, and 50%, respectively. These mixed concentrates were mixed with roughages and fed ad libitum as complete diets. Replacing corn and wheat bran with SH at 0, 25 and 50% levels did not influence (p=0.56-0.95) DM intakes (18.4, 18.6, and 18.5 kg/d), milk yields (27.7, 28.4 and 27.6 kg/d), 4% fat-corrected-milk (FCM) yields (26.2, 27.6, and 27.3 kg/d) and percentages of milk protein (3.12, 3.17 and 3.18%), milk lactose (4.69, 4.76 and 4.68%) and SNF (8.50, 8.64, and 8.54%). On the other hand, milk fat percentges linearly increased (3.63, 3.85 and 3.90% for SH replacement rates of 0, 25 and 50% in the diet, p=0.08), while feed costs per kg FCM production were reduced.