• Title/Summary/Keyword: Military simulation

Search Result 1,022, Processing Time 0.023 seconds

A Study on a Simulation Model to Analyze the Availability of a SoS (복합시스템 가용도 분석을 위한 시뮬레이션 모델 연구)

  • Kim, Hye-Lyeong;Kim, Ui-Hwan;Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1049-1057
    • /
    • 2011
  • Today, most weapon systems operate as component systems of SoS(System of Systems) and they produce synergy effects in the battle field by interoperating. In addition, the acquisition issues on weapon systems have expanded into SoS context including sustainment analysis. Availability is the sustainment KPP(Key Performance Parameter) of weapon systems. In this paper, a simulation model is proposed to analyze the availability of SoS. The simulation model consists of 5 modules: Mission and Task, System, System RBD, Maintenance system and a simulation engine. Then it was implemented and applied to a SoS. As a result of the application, the simulation model could be applied for analyzing the availability of the SoS and provided information about critical tasks and risky component systems to complete the given mission of the SoS.

A Study Techniques of OMS/MP Generation Using War Game Simulation (모의분석을 통한 OMS/MP 산출기법에 관한 연구)

  • Kim, Hae-Yean;Byun, Jae-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.802-811
    • /
    • 2012
  • This study proposes an OMS/MP preparation methodology using a simulation method instead of a survey method. We applied our methodology to the next generation detection radar, providing reasonable peace- and war-time OMS/MP values. Based on these results, we propose the process to calculate RAM objective values. The previous survey method required to supplement its method since the method used data from a similar weapon system. In addition, the previous method didn't provide enough reliability for the future weapon system. Instead of using the previous survey method, we propose to use war game simulation, which provides a better OMS/MP values. Based on these results, we propose the logical consecutive process that prepares combat and simulation scenarios, peace- and war-time OMS/MP values and RAM objective values.

Distributed Air Defense Simulation Model and its Applications (방공교전모델(DADSim) 개발 및 활용사례)

  • 최상영;김의환
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.134-148
    • /
    • 2001
  • In this paper, air-defense simulation model, called "DADSim", will be introduced. DADSim(Distributed Air Defense Simulation Model) was developed by Modeling&Simulation Lab of K.N.D.U.(Korea National Defence Univ) Weapon Systems Department. This model is an analysis-purpose model in the engagement-level. DADSim can simulate not only the global air-defense or Korean Peninsula but also the local air-defense or a battle field. DADSim uses the DTED(digital terrain elevation data) LeveII it for the representation of peninsula terrain characteristics. The weapon systems cooperated in the model are low/medium-range missile systems such as HAWK, NIKE, SAM. DADSim was designed in the way of object-oriented development method, implemented by C++ language. The simulation view is an event-sequenced object-orientation. For the convenience of input, output analysis, GUI(Graphic User Interface) of menu, window, dialog box, etc. are provided to the user, For the execution of DADSim, Silicon Graphic IRIX 6.3 or high version is required. DADSim can be used for the effectiveness analysis of­defence systems. Some illustrative examples will be shown in this paper.

  • PDF

Application of Genetic Algorithms to Optimize the Storage Location of Products in Military Logistics (군(軍) 물류창고 내(內) 물품 저장위치 최적화를 위한 유전알고리즘 적용 방안)

  • Ha, Won Yong;Cho, Ki-yang;Han, Chung Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.108-116
    • /
    • 2022
  • Supply in military operations has a significant impact on overall combat capability and efficiency. Therefore, modernization of military logistics is underway to ensure rapid and accurate distribution. And, effective warehouse management is paramount. This paper proposes a new product allocation model that uses a genetic algorithm. The model considers order frequency and mass of products because the military equipment is usually heavier than available products. A computer simulation shows that products are assigned to optimal locations and reduce the consumed energy for forklifts by more than 25 % with similar travel time. Also, we show the superiority of genetic algorithm by comparing them with other algorithms.

An Analysis on the Wartime Sealift Operation Capability of Korea (한국의 전시 해상수송능력 분석)

  • 조윤철;이상진
    • Journal of the military operations research society of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-46
    • /
    • 2002
  • This study focuses primarily on the construction of the wartime sealift operation model from US to Korea. There are some uncertainties in the process of sealift operation such as the procurement rate of materiel in US, the distribution of KFS on four initial position locations at the start of the activation, and the number of ports and berths in the SPOES and SPODS. The sealift capability, based on the allocation of sealift assets such as the number of vessels, berths, and ports, is evaluated through simulation. The simulation is executed with a baseline wartime scenario and then the results are analyzed through a sensitivity analysis. The military planner may use of this model as a standard for establishing effective and concrete sealift operation plan in the near future.

Development of the Distributed Real-time Simulation System Based on HLA and DEVS (DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발)

  • Kim, Ho-Jeong;Lee, Jae-Hyun;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.

(Study of Hybrid Defense Simulation Model for Wartime Stockpile Requirement of K-9 Artillery Munition Against Armored Vehicle) (K-9 포탄 전시 소요량 산정을 위한 하이브리드 국방 시뮬레이션 모형에 관한 연구)

  • Cho, Hong-Yong;Chung, Byeong-Hee
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-19
    • /
    • 2009
  • This study aims to improve methodology for a Defense Simulation which is to calculate wartime stockpile requirement of artillery munitions for K-9 against armored vehicles. Due to incorrect data input and distortion in simulation logic, the expected occupancy ratio for each weapon system obtained from applying a traditional method using an analytical Defense Simulation shows considerable discrepancies from what we expect from a war in the future. This study analyzes causes for incorrect data input and phenomena of distortion in simulation logic. By taking measures to control these phenomena, the study aims to present trustworthy methodology for a Hybrid Defense Simulation which is to calculate wartime stockpile requirement of munitions for ground forces by interaction between a controlled training Defense Simulation model and a analytical Defense Simulation model

Better Estimators of Multiple Poisson Parameters under Weighted Loss Function

  • Kim, Jai-Young
    • Journal of the military operations research society of Korea
    • /
    • v.11 no.2
    • /
    • pp.69-82
    • /
    • 1985
  • In this study, we consider the simultaneous estimation of the parameters of the distribution of p independent Poisson random variables using the weighted loss function. The relation between the estimation under the weighted loss function and the case when more than one observation is taken from some population is studied. We derive an estimator which dominates Tsui and Press's estimator when certain conditions hold. We also derive an estimator which dominates the maximum likelihood estimator(MLE) under the various loss function. The risk performances of proposed estimators are compared to that of MLE by computer simulation.

  • PDF

Performance Analysis of Dynamic TDMA and Fixed TDMA in Tactical Data Link (전술데이터링크의 동적 TDMA와 정적 TDMA 성능 분석)

  • Lee, Jong-Kwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.489-496
    • /
    • 2018
  • In this paper, a performance comparison of dynamic TDMA and fixed TDMA in tactical data link system is conducted. The performance metric include: delay, queue size and system throughput. To perform comparison of two TDMA schemes, we adopt the modified M/D/1 queueing model. Computer simulation is also performed to verify conducted analytical results.

A Study on Warfighting Experimentation for Organizing Operational Troops (작전부대의 인원편성 최적화를 위한 워게임 전투실험 방법에 대한 연구)

  • Lee, Yong-Bin;Yum, Bong-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.423-431
    • /
    • 2011
  • Warfighting experimentation is an important process for identifying requirements against changing military environment and for verifying proposed measures for reforming military service. The wargame simulation experiment is regarded as one of the most effective means to warfighting experimentation, and its importance is increasing than ever. On the other hand, the results of wargame experiments could be unreliable due to the uncertainty involved in the experimental procedure. To improve the reliability of the experimental results, systematic experimental procedures and analysis methods must be employed, and the design and analysis of experiments technique can be used effectively for this purpose. In this paper, AWAM, a wargame simulator, is used to optimize the organization of operational troops. The simulation model describes a warfighting situation in which the 'survival rate of our force' and the 'survival rate of the enemy force' are considered as responses, 'the numbers of weapons in the squad' as control factors, and 'the uncontrollable variables of the battlefield' as noise factors. In addition, for the purpose of effective experimentation, the product array approach in which the inner and outer orthogonal arrays are crossed is adopted. Then, the signal-to-noise-ratio for each response and the desirabilities for the means and standard deviations of responses are calculated and used to determine a compromise optimal solution. The experimental procedures and analysis methods developed in this paper can provide guidelines for designing and analyzing wargame simulation experiments for similar warfighting situations.