• Title/Summary/Keyword: Military robots

Search Result 59, Processing Time 0.017 seconds

A Study on Operational Concept of Military Guard and Surveillance Robots (군 경계 및 감시로봇 운용개념 연구)

  • Seo, Dong-Cheul;Lee, Woo-Chan;Hwang, Chun-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.5-14
    • /
    • 2008
  • In this paper, we propose operational concepts and technology requirements for guard and surveillance robots in military field. After surveying on current trend of guard robots, we present an operational scenario and technology requirements. To begin with, we discriminate the use of fixed type guard robots(fixed robots) and mobile guard and surveillance robots(mobile robots). Fixed robots are used for substituting daily guard by human soldier. In contrast, mobile robots are used for compensating shadow area where not to be covered by fixed type robots. To be specific, mobile robots adopt communication relays to extend operational range and sensor networks to collecting information. In addition, we present technology requirements composed of wireless communication system, platform, sensor nodes, unmanned driving technology, power supply system and IFF etc. In conclusion, in order to maximize co-operational functionality, fixed robots and mobile robots should be tightly related.

A Study on Intelligent Combat Robot Systems for Future Warfare

  • Sung-Kwon Kim;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.165-170
    • /
    • 2023
  • This study focuses on the development of intelligent combat robot systems for future warfare. The research is structured as follows: First, the introduction presents the rationale for researching intelligent combat robots and their potential to become game changers in future warfare. Second, in the context of the intelligent robot paradigm, this study proposes the need for military organizations to innovate their combat concepts and weapon systems through the effective utilization of Artificial Intelligence, Cognitive, Biometric, and Mechanical technologies. This forms the theoretical background of the study. Third, the analysis of intelligent robot systems considers five examples: humanoid robots, jumping robots, wheeled and quadrupedal pack robots, and tank robots. Finally, the discussion and conclusion propose that intelligent combat robots should be selected as game changers in military organizations for future warfare, and suggest further research in this area.

Survey on the Functional Clothing Design Factors for the Military Wearable Robot (육군 착용형 로봇을 장착하기 위한 기능성 의복 설계 요소 조사)

  • Eom, Rani;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.1004-1016
    • /
    • 2021
  • This study aims to derive the design requirements for functional clothing worn with military wearable robots using a survey of people with military experience. Specifically, 982 adult males with military and muscular exercise experience were surveyed for their demands for the clothing worn with wearable robots during military activities. The study showed that it is necessary to develop functional clothing worn inside robots suitable for frequent movements of soldiers to improve their comfort level of wearable robots. The surveyed soldiers indicated that they preferred the top and bottom clothing with high-pressure levels because the upper body felt fatigued during transportation, while both the upper and lower body got exhausted during marches. The survey of design requirements revealed that the participants preferred a top with long sleeves and a bottom with ankle-length leggings in color similar to current military uniforms. We conclude that it is important to design functional clothing worn inside wearable robots in different forms depending on frequent movements, e.g., with differentiated pressures and material placements.

Research on Intelligent Combat Robot System as a Game-Changer in Future Warfare

  • Byung-Hyo Park;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2023
  • The Army has presented eight game-changers for future warfare through 'Army Vision 2050,' including Intelligent Combat Robots, Super Soldiers, Energy Weapons, Hypersonic Weapons, Non-lethal Weapons, Autonomous Mobile Equipment, Intelligent Command and Control Systems, and Energy Supply Systems. This study focuses on Intelligent Combat Robots, considering them as the most crucial element among the mentioned innovations. How will Intelligent Combat Robots be utilized on the future battlefield? The future battlefield is expected to take the form of combined human-robot warfare, where advancements in science and technology allow intelligent robots to replace certain human roles. Especially, tasks known as Dirty, Difficult, Dangerous, and Dull (4D) in warfare are expected to be assigned to robots. This study suggests three forms of Intelligent Robots: humanoid robots, biomimetic robots, and swarm drones.

The Development of Small-sized Launchable Robot for Reconnaissance (발사형 소형정찰 로봇 개발)

  • Lee, Seung-Ho;Jung, Won-Suk;Lee, Min-Gu;Park, Ji-Hyuk;Park, Hyun-Soo;Yoo, Kyu-Jae;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.535-542
    • /
    • 2012
  • Recently, the study on small-sized reconnaissance robot has been progressed through grafting robot technology to military fields for minimizing the casualties. Especially, throwable robots have been focusing for their's efficiency in anti-terror operation. However, it is impossible to launch throwable robot to long range(approximately 100m) by hand. So we need another type of robots, so called launchable robots, which can launch farther and is more accurate by launcher. In this paper, we presented the process of developments of launchable robots('launchbot') which are available for remote launch from collection of user's opinions to field test. Based on the opinions of users, we established the goal of development, designed and manufactured the robots. Through the field test, we found that our launchable robot satisfied the performance requirements.

A Study on the Training Methodology of Combining Infrared Image Data for Improving Place Classification Accuracy of Military Robots (군 로봇의 장소 분류 정확도 향상을 위한 적외선 이미지 데이터 결합 학습 방법 연구)

  • Donggyu Choi;Seungwon Do;Chang-eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.293-298
    • /
    • 2023
  • The military is facing a continuous decrease in personnel, and in order to cope with potential accidents and challenges in operations, efforts are being made to reduce the direct involvement of personnel by utilizing the latest technologies. Recently, the use of various sensors related to Manned-Unmanned Teaming and artificial intelligence technologies has gained attention, emphasizing the need for flexible utilization methods. In this paper, we propose four dataset construction methods that can be used for effective training of robots that can be deployed in military operations, utilizing not only RGB image data but also data acquired from IR image sensors. Since there is no publicly available dataset that combines RGB and IR image data, we directly acquired the dataset within buildings. The input values were constructed by combining RGB and IR image sensor data, taking into account the field of view, resolution, and channel values of both sensors. We compared the proposed method with conventional RGB image data classification training using the same learning model. By employing the proposed image data fusion method, we observed improved stability in training loss and approximately 3% higher accuracy.

A Study on the Characteristic Method of Wearable Robot by Mission Profile (임무유형별 착용로봇 특성화 방안 연구)

  • Dowan Cha;Kyungtaek Lee;Joongeup Kye
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.444-455
    • /
    • 2023
  • In this report, a specialization plan for wearable robots by mission profile was investigated and analyzed to derive an application plan. The final goal of this study was to derive the operating requirements of wearable robots according to specialized plans, and to conduct a specialized study on wearable robots by mission profile through investigation/analysis of specialized plans for each mission profile. In the study, 1) Research on technology trends related to military wearable robots such as patents and papers, 2) Research/analysis of mission profiles to characterize wearable robots, 3) Analysis of wearable robot specialization plans according to mission profiles, and 4) Requirements for wearable robot operation were derived. In the first time of the study, a survey on technology trends related to wearable robots for soldiers such as patents and papers was completed, and a military consultative body was conducted to derive measures to characterize wearable robots. In addition, a survey was conducted on mission profiles, and the second time study derived Key Performance Parameters (KPP) for operational performance, core performance, and system performance based on scenarios by mission profile. However, it is revealed that the KPP derived from the research results was not covered in this paper because it was judged that more in-depth research was needed prior to disclosure. In order to prepare for future battlefield situations and increase the usability of wearable robots, this study was conducted to characterize wearable robots by considering the characteristics of soldiers' equipment according to mission profiles and to characterize wearable robots by mission profile.

Experimental Application of Robot Operability Simulator (ROSim) to the Operability Assessment of Military Robots (로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구)

  • Choi, Sangyeong;Park, Woosung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • Military robots are expected to play an important role in the future battlefield, and will be actively engaged in dangerous, repetitive and difficult tasks. During the robots perform the tasks a human operator controls the robots in a supervisory way. The operator recognizes battlefield situations from remote robots through an interface of the operator control center, and controls them. In the meantime, operator workload, controller interface, robot automation level, and task complexity affect robot operability. In order to assess the robot operability, we have developed ROSim (Robot Operational Simulator) incorporating these operational factors. In this paper, we introduce the results of applying ROSim experimentally to the assessment of reconnaissance robot operability in a battle field. This experimental assessment shows three resulting measurements: operational control workload, operational control capability, mission success rate, and discuss its applicability to the defense robot research and development. It is expected that ROSim can contribute to the design of an operator control center and the design analysis of a human-robot team in the defense robot research and development.

Task Allocation Framework Incorporated with Effective Resource Management for Robot Team in Search and Attack Mission (탐지 및 공격 임무를 수행하는 로봇팀의 효율적 자원관리를 통한 작업할당방식)

  • Kim, Min-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2014
  • In this paper, we address a task allocation problem for a robot team that performs a search and attack mission. The robots are limited in sensing and communication capabilities, and carry different types of resources that are used to attack a target. The environment is uncertain and dynamic where no prior information about targets is given and dynamic events unpredictably happen. The goal of robot team is to collect total utilities as much as possible by destroying targets in a mission horizon. To solve the problem, we propose a distributed task allocation framework incorporated with effective resource management based on resource welfare. The framework we propose enables the robot team to retain more robots available by balancing resources among robots, and respond smoothly to dynamic events, which results in system performance improvement.

Development of the Power Assist System for High Efficiency and Lightweight Wearable Robot in Unstructured Battlefield (비정형화된 전장 환경에 활용 가능한 고효율-경량형 외골격 착용 로봇의 근력 보조 시스템 개발)

  • Huichang Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.313-323
    • /
    • 2023
  • The wearable robot system is designed to assist human skeletal and muscular systems for enhancing user's abilities in various fields, including medical, industrial, and military. The military has an expanding need for wearable robots with the integration of surveillance/control systems and advanced equipment in unstructured battlefield environments. However, there is a lack of research on the design and mechanism of wearable robots, especially for power assist systems. This study proposes a lightweight wearable robot system that provides comfortable wear and muscle support effects in various movements for soldiers performing high-strength and endurance missions. The Power assist mechanism is described and verified, and the tasks that require power assist are analyzed. This study explain the system including its driving mechanism, control system, and mechanical design. Finally, the performance of the robot is verified through experiments and evaluations, demonstrating its effectiveness in muscle support.