• Title/Summary/Keyword: Mild steel

Search Result 390, Processing Time 0.027 seconds

Inhibition of Mild Steel Corrosion in 0.25 M Sulphuric Acid Solution by Imatinib Mesylate (0.25M 황산 용액 상에서의 Imatinib Mesylate에 의한 연강철 부식 억제)

  • Mohana, K.N.;Shivakumar, S.S.;Badiea, A.M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.364-372
    • /
    • 2011
  • The corrosion inhibition of imatinib mesylate (IMT) on mild steel in 0.25 M sulphuric acid has been studied using gravimetric and potentiodynamic polarization techniques at various concentrations of inhibitor, temperature and fluid velocities. The results obtained showed that, inhibition efficiency (% IE) increases with increasing concentration of the inhibitor. The adsorption process on mild steel surface follows Langmuir adsorption isotherm. The values of Gibbs free energies of adsorption obtained suggest that, the adsorption process of IMT on mild steel is chemisorption. Thermodynamic parameters were evaluated and discussed. The electron orbital density distribution of HOMO and LUMO of IMT was used to discuss the inhibition mechanism. FT-IR spectroscopy and SEM images were used to analyze the surface adsorbed film.

Experimental Investigation and Quantum Chemical Calculations of Some (Chlorophenyl Isoxazol-5-yl) Methanol Derivatives as Inhibitors for Corrosion of Mild Steel in 1 M HCl Solution

  • Sadeghzadeh, Rogayeh;Ejlali, Ladan;Eshaghi, Moosa;Basharnavaz, Hadi;Seyyedi, Kambiz
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.155-167
    • /
    • 2019
  • In this study, two novel Schiff base compounds including (3-(4-Chlorophenyl isoxazole-5-yl) methanol and (3-(2,4 dichlorophenol isoxazole-5-yl) methanol as corrosion inhibitors for mild steel in 1 M hydrochloric acid solution were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and density functional theory (DFT) computations. The results showed that the corrosion inhibition efficiency (IE) is remarkably enhanced with the growing concentration of the Schiff base inhibitors. The results from Tafel polarization and EIS methods showed that IE decreases with gradual increments of temperature. This process can be attributed to the displacement of the adsorption/desorption balance and hence to the diminution of the level of a surface coating. Also, the adsorption of two inhibitors over mild steel followed the Langmuir adsorption isotherm. Too, the results of the scanning electron microscope (SEM) images showed that the Schiff base inhibitors form an excellent protective film over mild steel and verified the results by electrochemical techniques. Additionally, the results from the experimental and those from DFT computations are in excellent accordance.

Enhanced Corrosion Protection Performance by Novel Inhibitor-Loaded Hybrid Sol-Gel Coatings on Mild Steel in 3.5% NaCl Medium

  • Suleiman, Rami K.
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.168-174
    • /
    • 2019
  • The sol-gel methodology has been applied successfully in the synthesis of a novel hybrid coating based on dimethoxymethyl-n-octadecylsilane precursor. The newly synthesized parent coating was functionalized further with two commercially-available corrosion-inhibitive pigments Moly-$white^{(R)}$ 101-ED and Hfucophos $Zapp^{(R)}$, applied to mild steel panels, and immersed continuously in 3.5% NaCl electrolytic solution for 288 h. The corrosion protection performance of the prepared functional coatings was evaluated using electrochemical impedance spectroscopy (EIS) and DC polarization techniques. An enhancement in the barrier properties has been revealed from the electrochemical characterization data of the hybrid films, in comparison with untreated mild steel substrates following long-term immersion in 3.5% NaCl. The corrosion resistance properties of the newly developed coatings over mild steel substrates found to be largely dependent on the type of the loaded inhibitive pigment in which the Moly-white inhibitor has a positive impact on the corrosion protection performance of the parent coating, while an opposite behavior was observed upon mixing the base polymeric matrix with the commercially-available Zapp corrosion inhibitor.

Studies on Methanolic Extract of Lepidagathis keralensis as Green Corrosion Inhibitor for Mild Steel in 1M HCl

  • Leena, Palakkal;Zeinul Hukuman, N.H.;Biju, A.R.;Jisha, Mullapally
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.231-243
    • /
    • 2019
  • The methanolic extracts of the leaves and stem of the plant Lepidagathis keralensis were evaluated for anticorrosion behavior against mild steel in 1M HCl. Corrosion inhibition studies were done by gravimetric method, electrochemical impedance spectroscopy and potentiodynamic polarization methods. Surface morphology of mild steel in the presence and absence of inhibitors were studied using SEM analysis. UV-Vis studies were also done to evaluate the mechanism of inhibition. Both the extracts showed good inhibition efficiency which increased with increase in concentration of the inhibitor and decreased with increase in temperature. The mechanism of inhibition was explained by adsorption which obeyed Langmuir adsorption isotherm. Thermodynamic calculations revealed a combination of both physisorption and chemisorption of the inhibitor on the surface of mild steel. The extracts behaved as mixed type inhibitors as determined by polarization studies. Quantum chemical studies on Phenoxyethene, one of the major components in the leaf extract of the plant was also carried out to support the experimental results.

Sliding Wear Behavior of Carbon Steel in changing Sliding Speed (Effects of Mild Wear Mode Test on subsequent Severe Wear Behavior) (미끄럼 속도변화에 따른 철강재료의 미끄럼 마모거동 (중마모 거동에 미치는 연마모 도입시험의 영향))

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.117-123
    • /
    • 2020
  • In this study, the effect of the pre-mild wear mode test condition on the subsequent severe wear behavior of carbon steel has been investigated when the wear mode is varied according to the sliding speed change during sliding contact. Two sliding speeds of 0.3 m/s and 3 m/s for the mild wear mode test have been chosen and a sliding speed of 1 m/s for the severe wear mode test. A mild wear mode test at two different sliding speeds has been carried out during the severe wear mode test and total sliding distance of the mild wear mode test has been changed at this time. As a result, it could be found that the wear rate of carbon steel under the severe wear mode test after performing a pre-mild wear mode test is significantly reduced, compared with that before performing. However, its wear rate was slightly higher than that under the mild wear mode test. Oxides produced during the pre-mild wear mode test have been found to play a significant role in reducing the wear rate under the subsequent severe wear mode test. In particular, it was found that the effect of a pre-mild wear mode test performed at the sliding speed of 3 m/s has more rapid and the reduction in the wear rate was greater than thst at the sliding speed of 0.3 m/s.

A study on the plasma arc cutting phenomena of plate materials (플라즈마 아크를 이용한 판재료의 절단현상에 관한 연구)

  • 엄기원;김동조
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.69-74
    • /
    • 1991
  • The Plasma Arc Cutting Method using high density and hight temperature beam is well applicable to the cutting of the nonferrous metal (Al alloy ) and stainless steel which are unable to be cut by the use of the oxy-fuel gas. This study focalizes on the cutting phenomena of the plate of (mm) thickness, since the cutting phenomena of thick plates have been rather thoroughly studied. In this study the cutting groove, adhesive phenomena of dross, surface roughness were measured according to the variation of cutting speed and compared with the case of mild steel plates. The result showed that the kerf width variation of Al alloy was similar to the case of mild steel, while that of the stainless steel differed from the mild steel. In the adhesive phenomena of dross, 6(mm) thick plates of Al alloy showed a difference from those of thick plates, but the stainless steel was similar to thick plates. The surface roughness variation of Al alloy wias minimum at 67 cm/min, while that of stainless steel was at 30cm/min.

  • PDF

Thermodynamics of Simultaneous Chromizing and Aluminizing of the Mild Steel (연강에 Cr과 Al의 동시 확산 침투 피복의 열역학적 연구)

  • 김선규;신원순
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.4
    • /
    • pp.161-164
    • /
    • 1992
  • Thermodynamic calculations were made to find an optimum condition of simultaneous chromizing and aluminizing of mild steel. Results of calculations showed that Cr-Al alloy powder should be used and the optimum composition was 90~95wt% Cr and 5~10wt% Al. Simultaneous chromizing and aluminizing of a mild steel was achieved using 95Cr-5Al wt% alloy powders as a masteralloy, NH4Cl as an activator at $1273^{\circ}$K under Ar atmosphere.

  • PDF

Investigation of some Natural Product Extracts as Corrosion Inhibitors for Mild Steel in Acid Mediu

  • Subramania, A.;Sathiya Priya, A.R.;Saravanan, S.;Abdul Nasser, A.J.;Vasudevan, T.
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.231-235
    • /
    • 2005
  • The inhibitive effect of extracts of tamarind seeds and jackfruit seeds, curry leaves and henna leaves on corrosion of mild steel in 1M HCl solution have been studied by weight loss, potentiodynamic polarization and impedance measurements. Results obtained from the electrochemical techniques were in good agreement with weight loss results. From the weight loss data, the values of surface coverage ($\Theta$) and corrosion rate were calculated. The inhibition efficiency (IE) increased with increasing inhibitor concentration in 1M HCl solution. In all the cases the adsorption of the natural product extracts on the mild steel surface from 1M HCl follows the Langmuir adsorption isotherm relationship. Potentiodynamic polarization studies reveal the fact that all the four natural product extracts act as mixed type inhibitors. The decrease in the inhibition efficiency follows the order: Extracts of jackfruit seed>henna leaves>curry leaves>tamarind seed.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Strain Rate Sensitive Behavior of Mild Steel Subjected to Dynamic Load (동 하중에 대한 연강 재질의 변형율 속도 민감도 특성 연구)

  • Park, Jong-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.377-382
    • /
    • 2004
  • The dynamic material characteristics on some mild steel sheets were observed. The dynamic tests were conducted on the ESH servo-hydraulic test machine. It was observed that the mechanical properties of mild steel are highly sensitive to the value of strain rate. The well known Cowper-Symonds constitutive equation was used to generalize the strain rate sensitivity effect. Modified constitutive equations were suggested to couple the strain hardening to the strain rate sensitivity. The dynamic stress-strain relationships for the mild steel sheets used in the present study were reasonably predicted using these modified constitutive equations.

  • PDF