• 제목/요약/키워드: Mild leg length discrepancy

검색결과 3건 처리시간 0.019초

Leg Length Discrepancy to Influence on Kinematic Changes of the Pelvis and the Hip during Gait

  • Yong, MinSik;Park, SoHyun
    • The Journal of Korean Physical Therapy
    • /
    • 제31권6호
    • /
    • pp.368-371
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of leg length discrepancy on kinematic changes of the pelvis and hip during gait. Methods: A total of ten healthy women with no history of neurological, musculoskeletal surgery or injuries, or pain in the lower limbs were recruited. They were assigned to two groups; the experimental group (LLD) consisting of five subjects leg length discrepancy of 10mm to 18mm and the control group (CON) consisting of five subjects leg length discrepancy of<10 mm. All participants were instructed to perform three walking trials for further analysis by using the Cortex 3.0 software program. Independent T-test and Mann-Whitney test were used to examine the effects of mild LLD on kinematic changes of the pelvis and hip during gait. Results: Angles of hip flexion, hip abduction, pelvic obliquity, and pelvic tilt in the experimental group were not significantly different compared to those of the control group. Conclusion: Mild leg length discrepancy induces kinematic changes in the lower limbs, including decreased hip flexion, increased hip abduction, and increased pelvic obliquity in the shorter limb, and increased hip adduction and increased pelvic obliquity in the longer limb. However, those changes were not significant.

The Effects of Simulated Mild Leg Length Discrepancy on Gait Parameters and Trunk Acceleration

  • Jung, Soo-jung;An, Duk-hyun;Shin, Sun-shil
    • 한국전문물리치료학회지
    • /
    • 제25권4호
    • /
    • pp.9-18
    • /
    • 2018
  • Background: Leg length discrepancy (LLD) leads to many musculoskeletal disorders and affects daily activities such as walking. In the majority of the population, mild LLD is a common condition. Nevertheless, it is still controversy among researchers and clinicians on the effects of mild LLD during gait, and available studies have largely overlooked this issue. Objects: The purpose of the present study is to investigate the effects of mild LLD on the gait parameters and trunk acceleration. Methods: A total of 15 female and male participants with no evidence of LLD of >.5 ㎝ participated in the present study. All participants walked under the following two conditions: (1) The non-LLD condition, where the participants walked in shoes of the same heel height; (2) A mild LLD condition induced by wearing a 1.5 ㎝ higher heel on the right shoe. The GAITRite system and tri-axial accelerometer were used to measure gait parameters and trunk acceleration. To compare the variation of each variable, a paired t-test was performed. Results: Compared to the non-LLD condition, step time and swing phase were significantly increased in the mild LLD condition, while stance phase, single support phase, and double support phase significantly decreased in the short limb (p<.05). In the long limb of the mild LLD condition, single support phase significantly increased, while swing phase significantly decreased (p<.05). Furthermore, significant decrease in the gait velocity and cadence in the mild LLD condition were observed (p<.05). In the comparison between both limbs in the mild LLD condition, the step time and swing phase of the short limb significantly increased compared with the long limb, while step length, stance phase, and single support phase of the long limb significantly increased compared with the short limb (p<.05). Additionally, trunk acceleration of all directions (anterior-posterior, medial-lateral, vertical) significantly increased in the mild LLD condition (p<.05). Conclusion: The results of the present study demonstrate that mild LLD causes altered and asymmetrical gait patterns and affects the trunk, resulting in inefficient gait. Therefore, mild LLD should not be overlooked and requires adequate treatment.

Effects of Artificial Leg Length Discrepancies on the Dynamic Joint Angles of the Hip, Knee, and Ankle During Gait

  • Kim, Yong-Wook;Jo, Seung-Yeon;Byeon, Yeoung-In;Kwon, Ji-Ho;Im, Seok-Hee;Cheon, Su-Hyeon;Kim, Eun-Joo
    • 대한물리의학회지
    • /
    • 제14권1호
    • /
    • pp.53-61
    • /
    • 2019
  • PURPOSE: This study examined the dynamic range of motion (ROM) of the hip, knee, and ankle joint when wearing different shoe sole lifts, as well as the limb asymmetry of the range according to the leg length discrepancy (LLD) during normal speed walking. METHODS: The participants were 40 healthy adults. A motion analysis system was used to collect kinematic ROM data. The participants had 40 markers attached to their lower extremities and were asked to walk on a 6 m walkway, under three different shoe lift conditions (without an insole, 1 cm insole, and 2 cm insole). Visual3D professional software was used to coordinate kinematic ROM data. RESULTS: Most of the ROM variables of the short limbs were similar under each insole lift condition (p>.05). In contrast, when wearing a shoe with a 2 cm insole lift, the long limbs showed significant increases in flexion and extension of the knee joint as well as; plantarflexion, dorsiflexion, pronation, eversion, and inversion of the ankle joint (p<.05). Of the shoes with the insole lifts, significant differences in all ROM variables were observed between the left and right knees, except for the knee internal rotation (p<.05). CONCLUSION: As the insole lift was increased, more ROM differences were observed between the left and right limbs, and the asymmetry of the bilateral lower limbs increased. Therefore, appropriate interventions for LLD are needed because an artificial mild LLD of less than 2.0 cm could lead to a range of musculoskeletal problems of the lower extremities, such as knee and ankle osteoarthritis.