• Title/Summary/Keyword: Mie scattering images

Search Result 27, Processing Time 0.022 seconds

Analysis of the Scattering Coefficients of Microspheres Using Spectroscopic Optical Coherence Tomography

  • Song, Woosub;Lee, Seung Seok;Lee, Byeong-il;Choi, Eun Seo
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.278-288
    • /
    • 2021
  • We propose a characterization method for the scattering property of microspheres using spectroscopic optical coherence tomography (OCT). To prove the effectiveness of the proposed method, we prepare solutions of different concentrations using microspheres ranging from 28 to 2300 nm in diameter. Time-frequency analysis is performed on the measured interference spectrum of each solution, and the resulting spectroscopic information is converted into histograms for centroid wavelengths. The histograms present a very sensitive response to changes in the concentration and size of microspheres. We classify them into three categories according to their characteristics. When the histogram of each category is replaced with the corresponding calculated value of the scattering coefficient, each category is mapped to a different scattering-coefficient region. It is expected that the proposed method could be used to investigate the optical characteristics of a biological sample from OCT images, which would be helpful for optical diagnostic and therapeutic applications.

Application of Fluorescence/Scattering Technique to the Measurement of Spray Droplet Size in GDI Injector (직접 분사식 가솔린 인젝터 분무의 입경 측정에 형광/산란광법의 적용)

  • Kwak, Soo-Min;Ryu, Kyeong-Hun;Choi, Bong-Seok;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.353-358
    • /
    • 2000
  • To achieve the requirement for high fuel economy and low emissions, the research for GDI engines is recently very brisk in the whole world. This study was performed to measure distribution of average particle size in non-evaporating spray. The 2-D fluorescence/scattering images of fuel spray were captured simultaneously by visualization system composed of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the two light intensities, particle size distribution was obtained. The SMD measured by fluorescence/scattering technique was compared with it obtained by PDA. The experimental results show that the spray structure of GDI injector and temporal SMD distribution.

  • PDF

Comparison of Liquid- and Vapor-Phase Spray Characteristics of E85 Fuel using Schlieren Visualization Technique (쉴리렌 가시화 기법을 이용한 E85 연료의 액상 및 기상 분무 비교)

  • Park, Suhan;Chang, Mengzhao
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.9-13
    • /
    • 2018
  • The purpose of this study is to investigate the liquid- and vapor-phase spray characteristics, such as spray tip penetration and spray angle using gasoline direct injection (GDI) injector with multi-hole. The vapor-phase spray was captured by the Schlieren visualization system, which consists of high-speed camera, LED lamp, concave mirrors, and knife-edge. The liquid-phase spray was visualized by Mie-scattering techniques. Both spray images of vapor- and liquid-phase were visualized under 373 K of ambient temperature, 1 bar of ambient pressure, and 100/200 bar of injection pressure. The energizing duration was fixed at 1.5 ms. From the analysis of experimental results, it revealed that the increased injection pressure induced an early vaporization due to the improvement of droplet atomization. The spray tip penetration and spray angle in vapor-phase were higher than those in liquid-phase. The difference in the spray tip penetration between vapor- and liquid-spray gradually increased with the time elapsed after the injection. Even with the spray angle characteristics, it was found that the difference between the spray angle of liquid and vapor spray gradually grew after they entered steady-state conditions.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

Spray Characteristics of Dimethyl Ether(DME) Fuel Compared to Various Diesel Fuels

  • Lee, Seang-Wock;Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • It is recognized that alternative fuel such as dimethyl ether (DME) has better combustion polluting characteristics than diesel fuel, even though the cetane number of DME is almost the same as that of diesel. Characteristics of DME spray were observed experimentally under various ambient conditions using a constant volume chamber and a common-rail injection system. N-dodecane and LPG fuel sprays were also observed under same conditions of DME spray. Using spray images from backlight scattering and Mie scattering, characteristics of fuel sprays such as penetration and spray volume were visualized and quantitatively measured. The measurements showed that the penetration of early period decreased remarkably, because evaporation of alternative fuels became prosperous by the influence of flash boiling phenomenon under the condition of the low temperature and pressure compared with n-dodecane. The penetration of DME and LPG spray received the influence of temperature more largely in comparison with low density, because the specific surface area increased by atomizing in high density.

  • PDF

Comparison of GDI Spray Prediction by Hybrid Models (혼합모델에 의한 GDI 분무예측의 비교)

  • Kang, Dong-Wan;Hwang, Chul-Soon;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1744-1749
    • /
    • 2003
  • The purpose of this study is to obtain the information about the development process of GDI spray. To acquire the characteristics of GDI spray, the computational study of hollow cone spray for high-pressure swirl injectors was performed. Several hybrid models using the modified KIVA code have been introduced and compared. WB model and LISA model were used for the primary breakup, and DDB and APTAB models were used for secondary breakup. To compare with the calculated results, the experimental results such as cross-sectional images and SMD distribution were acquired by laser Mie scattering technique and Phase Doppler Analyzer respectively. The results show that LISA+APTAB hybrid model has the best prediction for spray formation process.

A study on the characterization of open-type swirl injector (오픈형 압력 스월 분무의 특성 측정에 관한 연구)

  • Song, Da Hun;Lee, Hyunchang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 2021
  • In this experimental study, measurement techniques such as backlight imaging, optical patternator, and laser sheet drop sizing were applied to characterize open-type swirl injector used in Russian liquid rocket engine, RD 107. The typical development of swirl spray was observed in backlight images. The breakup length was measured by using the ratio between Mie scattering and fluorescence signal. Relative Sauter Mean Diameter was measured by using laser sheet drop sizing and the possible source of errors were discussed.

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

A Study on the Behavior of Evaporating Diesel Spray Using LIEF Measurement and KIVA Code

  • Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Yong-Rae;Min, Kyoung-Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2310-2318
    • /
    • 2004
  • The effects of change in injection pressure on spray structure in high temperature and pressure field have been investigated. The analysis of liquid and vapor phases of injected fuel is important for emissions control of diesel engines. Therefore, this work examines the evaporating spray structure using a constant volume vessel. The injection pressure is selected as the experimental parameter, is changed from 400 bar to 800 bar by using a common rail injection system. Also, we conducted simulation study by modified KIVA-II code. The results of simulation study are compared with experimental results. The images of liquid and vapor phase for free spray were simultaneously taken by exciplex fluorescence method. As experimental results, the vapor concentration of injected fuel is leaner due to the increase of atomization in the case of the high injection pressure than in that of the low injection pressure. The calculated results obtained by modified KIVA-II code show good agreements with experimental results.