• 제목/요약/키워드: Middle Yellow Sea

Search Result 80, Processing Time 0.019 seconds

A Geoacoustic Model at the YMGR-102 Long-core Site in the Middle of the Yellow Sea

  • Ryang, Woo-Hun;Kim, Seong-Pil
    • 한국지구과학회지
    • /
    • 제43권4호
    • /
    • pp.520-531
    • /
    • 2022
  • The Yellow Sea experienced glacio-eustasy sea-level fluctuations during the Quaternary period. In the middle part of the Yellow Sea, the Quaternary successions were accumulated by alternating terrestrial, paralic, and shallow marine deposits that reflected the fluctuating sea levels. A long core of 69.2 m was acquired at the YMGR-102 site (33°50.1782'N and 123°48.3019'E) at a depth of 72.5 m in the middle of the Yellow Sea. A four-layered geoacoustic model was reconstructed for the sedimentary succession. It was based on seismic characteristics from 3.5 kHz SBP and air-gun seismic profiles and 96 grain-size properties in the core sample from YMGR-102. For the underwater simulation and experiments, the in-situ P-wave speeds were calculated using the sound speed ratio of the Hamilton method. The geoacoustic model of YMGR-102 can contribute to the reconstruction of geoacoustic models, reflecting the vertical and lateral variability of the acoustic properties in the continental shelf of the middle Yellow Sea.

Water Mass Distribution and Seasonal Circulation Northwest of Cheju Island in 1994

  • PANG Ig-Chan;RHO Hong-Kil;LEE Jae-Hak;LIE Heung-Jae
    • 한국수산과학회지
    • /
    • 제29권6호
    • /
    • pp.862-875
    • /
    • 1996
  • The CTD data observed in the sea northwest of Cheju Island have been analyzed to figure out the seasonal circulation around Cheju Island. Warm and saline waters flow into the Yellow Sea through the middle region of the Yellow Sea in winter and along the west coast of Korean Peninsula in summer. On the other hand, cold and less saline waters flow out of the Yellow Sea through the middle region in summer and along the west coast of Korean Peninsula in winter. These flows make the seasonal circulation around Cheju Island. As dynamics, the monsoon wind and the variation of Kuroshio transport have been suggested. Comparing the observational result, the circulation driven by the variation of Kuroshio transport is strengthened by monsoon winds in the numerical model.

  • PDF

The Records of Origin and Transport of Sediments From the Past to the Present in the Yellow Sea

  • Yi, Hi-Il;Chun, Jong-Hwa;Shin, Im-C.;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.96-106
    • /
    • 2004
  • A total of 116 surface sediment samples were obtained on the Yellow Sea and analyzed for grain size and geochemical elements in order to interpret the present sediment transportation. Thirty-nine cores and 3,070 line-km shallow seismic profiles are analyzed for sedimentary records of Yellow Sea in the past. Results show that the boundary of sediment transport between Korean side and Chinese side is about between $123^{\circ}E$ and $124^{\circ}E$. The similar result is produced from Shi et al. (in this publication). Two cyclonic patterns of surface sediments are recognized in the northeastern and southwestern Yellow Sea, while the strong front zone of the mud patch and sandy sediments are found in the southeastern Yellow Sea (the southwestern part of Korean coasts). The formation of fine-particle sediment packages, called for Northwest Mudbelt Deposit (NWMD), Hucksan Mudbelt Deposit (HSMD) and Jeju Mudbelt Deposit (JJMD), are resulted from eddies (gyres) of water circulations in the Yellow Sea. NWMD has been formed by cyclonic (anticlockwise) eddy. NWMD is composed of thick, homogeneous, relatively semi-consolidated gray clay-dominated deposit. On the other hand, HSMD and JJMD are formed by anticyclonic (clockwise) eddies. They are thick, homogeneous, organic-rich gray, silt-dominated deposit. Both core and surface sediments show that the middle zone across Chinese and Korean side contains bimodal frequency of grain-size distribution, indicating that two different transport mechanisms exist. These mud packages are surrounded by sand deposits from both Korea and China seas, indicating that Yellow Sea, which is the shallow sea and epicontinental shelf, is formed mostly by sand deposits including relict sands. The seismic profiles show such as small erosional/non-depositional channels, sand-ridges and sand-waves, Pleistocene-channelfilled deposits, a series of channels in the N-S major channel system, and thick Holocene sediment package, indicating that more complex sedimentary history exists in the Yellow Sea.

서해 중부 연안생태계 수산자원의 종조성과 계절변동 (Seasonal variation of fisheries resources composition in the coastal ecosystem of the middle Yellow Sea of Korea)

  • 이재봉;이종희;신영재;장창익;차형기
    • 수산해양기술연구
    • /
    • 제46권2호
    • /
    • pp.126-138
    • /
    • 2010
  • To investigate seasonal variation of fisheries resources composition and their correlationships with environmental factors in the coastal ecosystem of the middle Yellow Sea of Korea, shrimp beam trawl were carried out for the fisheries survey. Fisheries resources of 81 species, 57 families, and 6 taxa totally were collected by shrimp beam trawl in the middle coastal ecosystem of Yellow Sea of Korea. Species were included 6 species in Bivalvia, 6 in Cephalopoda, 22 in Crustacea, 2 in Echinodermata, 5 in Gastropoda, and 40 in Pisces. Diversity indices (Shannon index, H') showed seasonal variation with low value of 2.14 in winter, and high value of 2.67 in spring. Main dominant species were Oratosquilla oratoria, Octopus ocellatus, Acanthogobius lactipes, Cynoglossus joyneri, Rapana venosa venosa, Loligo beka, Chaeturichthys stigmatias, Raja kenojei, Microstomus achne and Paralichthys olivaceus, that were occupied over 58% of total individuals, and 55% of wet weight. Fisheries organism made four coordinative seasonal groups by the principal component analysis (PCA), showing stronger seasonal variation than spatial variation. PC from PCA showed statistically significant cross-correlationships with seawater temperature, $NH_4$-N, TP and chlorophyll a (P < 0.05).

Spatial distribution of dinoflagellate resting cysts in Yellow Sea surface sediments

  • Hwang, Choul-Hee;Kim, Keun-Yong;Lee, Yoon;Kim, Chang-Hoon
    • ALGAE
    • /
    • 제26권1호
    • /
    • pp.41-50
    • /
    • 2011
  • Yellow Sea surface sediment samples collected on October 15-31, 2003 were analyzed using the palynological process to investigate the spatial distribution of dinoflagellate resting cysts. The sampling areas comprised four latitudinal transects, the northernmost of which was located off the Shandong Peninsula, China and the southernmost off Jeju Island, Korea. Each transect line was composed of six to nine stations, spanning the distance between the Chinese and Korean coasts. Twenty-five different types of dinoflagellate cysts were identified. Gonyaulax scrippsae, Alexandrium spp. (ellipsoidal type), and G. spinifera were the most dominant at all stations surveyed. Dinoflagellate cysts belonging to the Gonyaulacales comprised over 50% of all cysts collected. The latitudinal distribution trend showed that cyst concentrations along the two middle transects were much higher than those along the two northern and southern transects. Cyst concentrations in the offshore central areas reached their highest values within each transect and gradually decreased toward the Chinese and Korean coasts. Overall, cyst concentrations were markedly elevated in the offshore central Yellow Sea areas and gradually decreased outward in all four directions. This concentric cyst distribution pattern was consistent with the hydrographic features of the Yellow Sea, such as circular current systems, sedimentary properties, and water depth.

황해중부해역에서의 대형 해양관측부이의 운용 (Application of a Large Ocean Observation Buoy in the Middle Area of the Yellow Sea)

  • 심재설;이동영;김선정;민인기;정진용
    • Ocean and Polar Research
    • /
    • 제31권4호
    • /
    • pp.401-414
    • /
    • 2009
  • Yellow Sea Buoy (YSB) was moored in the center of the Yellow Sea at 35$^{\circ}$51'36"N, 124$^{\circ}$34'42"E, on 12 September 2007. YSB is a large buoy of 10 m diameter, and as such is more durable against collision by ships and less likely to be lost or removed by fishing nets compared to small ordinary buoys of 2.3 m diameter. YSB is equipped with 12 kinds of oceanic and meteorologic instruments, and transfers its realtime observation data to KORDI through ORBCOMM system every 1 hour. Data on ocean winds, air temperature, air pressure, and sea temperature appear to be accurate, while water property sensors (AAQ1183), which are sensitive to fouling, are producing errors. YSB (2007), Ieodo ocean research station (2003), and Gageocho ocean research station, which was completed in October 2009, will establish the 2 degrees interval by latitude in the Yellow Sea, and they will contribute though the 'Operational Oceanography System' as the important realtime observation network.

종관규모 기압능이 한반도를 덮고 있는 기간에 중부지방에서 나타난 호우의 발생 원인 (A Study of a Heavy Rainfall Event in the Middle Korean Peninsula in a Situation of a Synoptic-Scale Ridge Over the Korean Peninsula)

  • 김아현;이태영
    • 대기
    • /
    • 제26권4호
    • /
    • pp.577-598
    • /
    • 2016
  • Observational and numerical studies have been carried out to understand the cause and development processes of the heavy rainfall over the middle Korean Peninsula during 0300 LST-1500 LST 29 June 2011 (LST = UTC + 0900). The heavy rainfall event occurred as the synoptic-scale ridge extended from Western Pacific Subtropical High (WPSH) was maintained over East Asia. Observational analysis indicates that the heavy rainfall is mainly due to scattered convective systems, formed over the Yellow Sea, traveling northeastward across the middle peninsula without further organization into larger systems during 0300 LST-0800 LST, and mesoscale convective systems (MCSs) over the Yellow Sea, transformed into a squall line, traveling eastward during 0800 LST-1500 LST. Organization of convective systems into MCSs can be found over the area of mesoscale trough and convergence zone in the northern end of the low-level jet (LLJ) after 0600 LST. Both observational and numerical investigations indicate that a strong LLJ extended from the East China Sea to the Yellow Sea plays an essential role for the occurrence of heavy rainfall. The strong LLJ develops in between the WPSH and a pressure trough over eastern China. Numerical experiments indicate that the land-sea contrast of solar heating of surface and latent heating due to convective developments are the major factors for the development of the pressure trough in eastern China. Numerical study has also revealed that the mountainous terrain including the mountain complex in the northern Korean Peninsula contributes to the increase of rainfall amount in the middle part of the peninsula.

황해 참서대(Cynoglossus joyneri) 자어의 형태기재 (Morphological Description of Cynoglossus joyneri Larvae Collected from the Yellow Sea)

  • 구선옥;황학진;김진구
    • 한국수산과학회지
    • /
    • 제42권6호
    • /
    • pp.725-728
    • /
    • 2009
  • Four specimens of Cynoglossus larvae (3.2-7.3 mm in notochord length, NL) collected from the middle Yellow Sea in August, 2008 were identified as Cynoglossus joyneri larvae based on morphological characteristics; (1) the two elongated dorsal fin rays on the parietal region, (2) protruded abdomen, (3) no melanophores on the mediolateral trunk and tail. Larva of 3.2 mm NL is compressed with a little big head and tapering, long tail. Larva of 7.0 mm NL has 115 dorsal fin and 85 anal fin rays, which are the same to those of adult. Larva of 7.3 mm NL tended to have concave part in the fringe of forehead, in which left-side eye may move to the other side.

한국서해의 해양과 대기간 에너지의 효과 (Sea-air Energy Exchange in the Eastern Yellow Sea)

  • 이동영;장선덕
    • 수산해양기술연구
    • /
    • 제12권2호
    • /
    • pp.37-42
    • /
    • 1976
  • Each term of heat badget equation in the eastern Yellow Sea was calculated and the variation in relation to meteorological condition was shown for the period from September 1973 to February 1974, At Mal-do near Gunsan the maximum heat exchange occurred at the last ten days of December (--522 1y/day), while at Sunmi-do near Incheon it occurred at the middle ten days of November (--665 1y /day), The contribution of the sensible heat to total heat exchange increased rapidly, while the effect of cloudiness decreased to be negligible in winter. The values of the heat exchange fluctuated considerably with the periodic occurrence of the cold Siberiaa air mass. The mean evaporation heat estimated indirectly from the aerological data was 32 ly/day at the northern part and 269 ly/dlY at the southern part of the Yellow Sea in December 1973.

  • PDF

2015년 4월에 제주 서부해역에서 발생한 수온역전층 특성 (Characteristics of Water Temperature Inversion Observed in a Region West of Jeju Island in April 2015)

  • 김성현
    • Ocean and Polar Research
    • /
    • 제42권2호
    • /
    • pp.97-113
    • /
    • 2020
  • In-situ observations were carried out in April 2015 to investigate the occurrence of water temperature inversion in a region west of Jeju Island. Analysis of in-situ in the western part of Jeju island showed that cold water moved to the southeast from the surface to the middle layer and warm water moved from the middle to the lower layer of the northwest direction. The water temperature inversion occurred at 84 stations (63.1%) out of 133 stations. At the boundary of the water temperature inversion layer, it was formed in the middle layer and disappeared. In the strongly appearing, it started from the middle layer to the lower layer. The shape of the water temperature inversion layer was different. As a result of horizontal water temperature slope analysis of the water temperature inversion zone, maximum 0.23℃/km was obtained and the mean was 0.06℃/km. The role of water temperature inversion as an indicator to determine the formation of water front. As a result of the water mass analysis, Jeju Warm Current Water and Tsushima Warm Current Water of high temperature and high salt intruded from the middle to the bottom. In the middle layer occurred as the Yellow Sea Cold Water of low water temperature and low salinity expanded.