• Title/Summary/Keyword: Mid-surface

Search Result 608, Processing Time 0.023 seconds

Automatic Generation of Triangular Shell Element Meshes on Mid-Surface in Shell Structure (셸 구조물의 중간면에 대한 삼각형 셸 요소망의 자동생성)

  • Moon, Yeon-Cheol;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.451-460
    • /
    • 2007
  • The surface of 3D shell structure is created by using NURBS and nodes for generating finite element mesh on the surface are created by using external node offset method. In so doing the shortest distance between nodes on the top and bottom surface is searched and then the coordinates of nodes are determined by calculating the mid point of them in the middle of top and bottom surface. Triangular elements are formed on mid surface, and the average aspect ratio of the generated triangular elements are over 0.9.

Dimension Reduction of Solid Models by Mid-Surface Generation

  • Sheen, Dong-Pyoung;Son, Tae-Geun;Ryu, Cheol-Ho;Lee, Sang-Hun;Lee, Kun-Woo
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • Recently, feature-based solid modeling systems have been widely used in product design. However, for engineering analysis of a product model, an ed CAD model composed of mid-surfaces is desirable for conditions in which the ed model does not affect analysis result seriously. To meet this requirement, a variety of solid ion methods such as MAT (medial axis transformation) have been proposed to provide an ed CAE model from a solid design model. The algorithm of the MAT approach can be applied to any complicated solid model. However, additional work to trim and extend some parts of the result is required to obtain a practically useful CAE model because the inscribed sphere used in the MAT method generates insufficient surfaces with branches. On the other hand, the mid-surface ion approach supports a practical method for generating a two-dimensional ed model, even though it has difficulties in creating a mid-surface from some complicated parts. In this paper, we propose a dimension reduction approach on solid models based on the midsurface abstraction approach. This approach simplifies the solid model by abbreviating or removing trivial features first such as the fillet, mounting, or protrusion. The geometry of each face is replaced with mid-patches from the simplified model, and then unnecessary topological entities are deleted to generate a clean ed model. Also, additional work, such as extending and stitching mid-patches, completes the generation of a mid-surface model from the patches.

Removal of mid-frequency error from the off-axis mirror

  • Kim, Sanghyuk;Pak, Soojong;Jeong, Byeongjoon;Shin, Sangkyo;Kim, Geon Hee;Lee, Gil Jae;Chang, Seunghyuk;Yoo, Song Min;Lee, Kwang Jo;Lee, Hyuckee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.103-103
    • /
    • 2014
  • Manufacturing of lens and mirror using Diamond Turning Machine (DTM) offers distinct advantages including short fabrication time and low cost as compared to grinding or polishing process. However, the DTM process can leave mid-frequency error in the optical surface which generates an undesirable diffraction effect and stray light. The mid-frequency error is expected to be eliminated by mechanical polishing after the DTM process, but polishing of soft surface of ductile aluminum is extremely difficult because the polishing process inevitably degrades the surface form accuracy. In order to increase its surface hardness, we performed electroless nickel plating on the surface of diamond-turned aluminum (Al-6061T6) off-axis mirrors, which was followed by the 6-hour-long baking process at $200^{\circ}C$ for improving its hardness. Then we polished the nickel plated off-axis mirrors to remove the mid-frequency error and measured polished mirror surfaces using the optical surface profilometer (NT 2000, Wyko Inc.). Finally, we ascertained that the mid-frequency error on the mirror surface was successfully removed. During the whole processes of nickel plating and polishing, we monitored the form accuracy using the ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.) to maintain it within the allowable tolerance range (< tens of nm). The polished off-axis mirror was optically tested using a visible laser source and a pinhole, and the airy pattern obtained from the polished mirror was compared with the unpolished case to check the influence of mid-frequency error on optical images.

  • PDF

Neutral surface-based static and free vibration analysis of functionally graded porous plates

  • J.R. Cho
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.431-440
    • /
    • 2023
  • The functionally graded (FG) porous plates are usually characterized by the non-symmetric elastic modulus distribution through the thickness so that the plate neutral surface does not coincide with the mid-surface. Nevertheless, the conventional analysis models were mostly based on the plate mid-surface so that the accuracy of resulting numerical results is questionable. In this context, this paper presents the neutral surface-based static and free vibration analysis of FG porous plates and investigates the differences between the mid- and neutral surface-based analysis models. The neutral surface-based numerical method is formulated using the (3,3,2) hierarchical model and approximated by the last introduced natural element method (NEM). The volume fractions of metal and ceramic are expressed by the power-law function and the cosine-type porosity distributions are considered. The proposed numerical method is demonstrated through the benchmark experiment, and the differences between two analysis models are parametrically investigated with respect to the thickness-wise material and porosity distributions. It is found from the numerical results that the difference cannot be negligible when the material and porosity distributions are remarkably biased in the thickness direction.

Level set method for the simulation of rising bubble based on triangular and Quadrilateral elements (삼각형 요소와 사각형 요소에 기초한 상승기포의 모사를 위한 Level set 방법)

  • Cho, M.H.;Choi, H.G.;Jeon, B.J.;Yoo, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.10-13
    • /
    • 2011
  • A level set method is proposed to simulate the incompressible two-phase flow considering the effect of surface tension. For reinitialization of level set junction, a direct approach method is employed, instead of solving hyperbolic type equation. A mixed element is adopted, so that the continuity mid Navier-Stokes equations are solved by using the quadratic elements (six-node triangular element mid nine-node quadrilateral element), mid the level set function is solved by using the linear elements (three-node triangular element mid four-node quadrilateral element). In order to verify the accuracy mid robustness of the codes, the present methods are applied to a few benchmark problems. It is confirmed that the present results are in good qualitative mid quantitative agreements with the existing studies.

  • PDF

Automatic Generation of Mid-Surfaces of Solid Models by Maximal Volume Decomposition (최대볼륨분해 방법을 이용한 중립면 모델의 자동생성)

  • Woo, Yoon-Hwan;Choo, Chang-Upp
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.297-305
    • /
    • 2009
  • Automatic generation of the mid-surfaces of a CAD model is becoming a useful function in that it can help increase the efficiency of engineering analysis as far as it does not affect the result seriously. Several methods had been proposed previously to automatically generate the mid-surfaces, but they often failed to generate the mid-surfaces of complex CAD models. Due to the inherent difficulty of this mid-surface generation problem, it may not be possible to come up with a complete and general method to solve this problem. Since a method that can handle a specific case may not work for different cases, it seems that developing case-specific methods ends up with solving only a fraction of the problem. In this paper, therefore, we propose a method to generate mid-surfaces based on a divide-and-conquer paradigm. This method first decomposes a complex CAD model into simple volumes. The mid-surfaces of the simple volumes are automatically generated by the existing methods, and then they are converted into the mid-surfaces of the original CAD model.

Surface Temperature Retrieval from MASTER Mid-wave Infrared Single Channel Data Using Radiative Transfer Model

  • Kim, Yongseung;Malakar, Nabin;Hulley, Glynn;Hook, Simon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.151-162
    • /
    • 2019
  • Surface temperature has been derived from the MODIS/ASTER airborne simulator (MASTER) mid-wave infrared single channel data using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model with input data including the University of Wisconsin (UW) emissivity, the National Centers for Environmental Prediction (NCEP) atmospheric profiles, and solar and line-of-sight geometry. We have selected the study area that covers some surface types such as water, sand, agricultural (vegetated) land, and clouds. Results of the current study show the reasonable geographical distribution of surface temperature over land and water similar to the pattern of the MASTER L2 surface temperature. The thorough quantitative validation of surface temperature retrieved from this study is somehow limited due to the lack of in-situ measurements. One point comparison at the Salton Sea buoy shows that the present estimate is 1.8 K higher than the field data. Further comparison with the MASTER L2 surface temperature over the study area reveals statistically good agreement with mean differences of 4.6 K between two estimates. We further analyze the surface temperature differences between two estimates and find primary factors to be emissivity and atmospheric correction.

Effect of pulse frequency and duty cycle on microstructure, residual stress and mechanical properties of ZrN coatings deposited by mid-frequency magnetron sputtering (펄스 주파수 및 듀티 사이클이 중간 주파수 마그네트론 스퍼터법으로 증착된 ZrN 코팅막의 미세구조, 잔류응력 및 기계적 특성에 미치는 영향)

  • Sung-Yong Chun
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.348-354
    • /
    • 2024
  • Nanocrystalline zirconium nitride (ZrN) coatings were deposited by mid-frequency direct current sputtering (mfMS) with varying pulsed plasma parameters such as pulse frequency and duty cycle to understand the effect of pulsed plasma on the microstructure, residual stress and mechanical properties. The results show that, with the increasing pulse frequency and decreasing duty cycle, the coating morphology changed from a porous columnar to a dense structure, with finer grains. Mid-frequency magnetron sputtered ZrN coatings with pulse frequency of 30 kHz showed the highest both nanoindentation hardness of 16.3 GPa, and elastic modulus of 214.4 GPa. In addition, Effect of pulse frequency on a residual stress and average crystal grain sizes was also investigated.

Planar harmonic mappings and curvature estimates

  • Jun, Sook-Heui
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.803-814
    • /
    • 1995
  • Let $\Sigma$ be the class of all complex-valued, harmonic, orientation-preserving, univalent mappings defined on $\Delta = {z : $\mid$z$\mid$ > 1}$ that map $\infty$ to $\infty$.

  • PDF

TOTAL CURVATURE FOR SOME MINIMAL SURFACES

  • Jun, Sook Heui
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.285-289
    • /
    • 1999
  • In this paper, we estimate the total curvature of non-parametric minimal surfaces by using the properties of univalent harmonic mappings defined on ${\Delta}=\{z:{\mid}z:{\mid}>1\}$.

  • PDF