DOI QR코드

DOI QR Code

Effect of pulse frequency and duty cycle on microstructure, residual stress and mechanical properties of ZrN coatings deposited by mid-frequency magnetron sputtering

펄스 주파수 및 듀티 사이클이 중간 주파수 마그네트론 스퍼터법으로 증착된 ZrN 코팅막의 미세구조, 잔류응력 및 기계적 특성에 미치는 영향

  • Sung-Yong Chun (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 전성용 (목포대학교 첨단재료공학과)
  • Received : 2022.08.29
  • Accepted : 2022.09.23
  • Published : 2024.08.31

Abstract

Nanocrystalline zirconium nitride (ZrN) coatings were deposited by mid-frequency direct current sputtering (mfMS) with varying pulsed plasma parameters such as pulse frequency and duty cycle to understand the effect of pulsed plasma on the microstructure, residual stress and mechanical properties. The results show that, with the increasing pulse frequency and decreasing duty cycle, the coating morphology changed from a porous columnar to a dense structure, with finer grains. Mid-frequency magnetron sputtered ZrN coatings with pulse frequency of 30 kHz showed the highest both nanoindentation hardness of 16.3 GPa, and elastic modulus of 214.4 GPa. In addition, Effect of pulse frequency on a residual stress and average crystal grain sizes was also investigated.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022H1D8A303867111)

References

  1. J. Deng, J. Liu, J. Zhao, W. Song, M. Niu, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear, 264 (2008) 298-307.
  2. J.C. Caicedo, G. Zambrano, W. Aperador, L.E. Alarcon, E. Camps, Mechanical and electrochemical characterization of vanadium nitride (ZrN) thin films, Applied Surface Science, 258 (2011) 312-320.
  3. D. Valerini, M.A. Signore, A. Rizzo, L. Tapfer, Optical function evolution of ion-assisted ZrN films deposited by sputtering, Journal of Applied Physics, 108 (2010) 083536.
  4. S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Variation of color in titanium and zirconium nitride decorative thin films, Thin Solid Films, 415 (2002) 187-194.
  5. A. Rizzo, M.A. Signore, D. Valerini, D. Altamura, A. Cappello, L. Tapfer, A study of suppression effect of oxygen contamination by bias voltage in reactively sputtered ZrN films, Surface and Coatings Technology, 206 (2012) 2711-2718.
  6. M.M. Larijani, N. Tabrizi, S. Norouzian, A. Jafari, S. Lahouti, H.H. Hosseini, N. Afshari, Structural and mechanical properties of ZrN films prepared by ion beam sputtering with varying N2/Ar ratio and substrate temperature, Vacuum, 81 (2006) 550-555.
  7. B. Koscielska, A. Winiarski, W. Jurga, Structure and superconductivity of ZrN-SiO2 films obtained by thermal nitridation of sol-gel derived coatings, Journal of Non-Crystalline Solids, 356 (2010) 1998-2000.
  8. M. Fallqvist, M. Olsson, Influence of surface defects on the mechanical and tribological properties of ZrN-based arc-evaporated coatings, Wear, 297 (2013) 1111-1119.
  9. H. Hanizam, A.R. Soufhwee, K. Anuar, A.R.M. Nizam, N. Mohamad, The effect of pulse DC and DC substrate bias during in situ cleaning PVD process on surface roughness, Procedia Engineering, 53 (2013) 562-568.
  10. K. Bobzin, N. Bagcivan, P. Immich, S. Bolz, J. Alami, R. Cremer, Advantages of nanocomposite coatings deposited by high power pulse magnetron sputtering technology, Journal of Materials Processing Technology, 209 (2009) 165-170.
  11. J. Sellers, Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD, Surface and Coatings Technology, 98 (1998) 1245.
  12. A. Anders, Physics of arcing, and implications to sputter deposition, Thin Solid Films, 502 (2006) 22-28.
  13. S.Y. Chun, M.G. Han, Growing behavior of nanocrystalline TiN films by asymmetric pulsed DC reactive magnetron sputtering, Journal of the Korean Ceramic Society, 48 (2011) 342-347.
  14. S.Y. Chun, J.Y. Hwang, Effects of duty cycle and pulse frequency on the microstructure and mechanical properties of TiAlN coatings, Journal of the Korean Ceramic Society, 51 (2014) 447-452.
  15. S.Y. Chun, S.W. Park, A comparative study of CrN coatings deposited by DC and pulsed DC asymmetric bipolar sputtering for a polymer electrolyte membrane fuel cell (PEMFC) metallic bipolar plate, Journal of the Korean Ceramic Society, 50 (2013) 390-395.
  16. F. Ge, P. Zhu, F. Meng, Q. Xue, F. Huang, Achieving very low wear rates in binary transition-metal nitrides: the case of magnetron sputtered dense and highly oriented ZrN coatings, Surface and Coatings Technology, 248 (2014) 81-90.
  17. S.Y. Chun, Microstructure, crystal structure and mechanical properties of VN coatings using asymmetric bipolar pulsed DC sputtering, Journal of the Korean Institute of Surface Engineering, 49 (2016) 461-466.
  18. Y. Qiu, S. Zhang, B. Li, J.W. Lee, D. Zhao, Influence of nitrogen partial pressure and substrate bias on the mechanical properties of ZrN coatings, Procedia Engineering, 36 (2012) 217-225.
  19. T. Nakano, C. Murata, S. Baba, Effect of the target bias voltage during off-pulse period on the impulse magnetron sputtering, Vacuum, 84 (2010) 1368-1371.
  20. M. Kumar, S. Mishra, R. Mitra, Effect of Ar: N2 ratio on structure and properties of Ni-TiN nanocomposite thin films processed by reactive RF/DC magnetron sputtering, Surface and Coatings Technology, 228 (2013) 100-114.
  21. H. Du, H. Zhao, J. Xiong, W. Wan, Y. Wu, L. Wang, G. Xian, Effect of Ar/N2 flow ratio on oxidation resistance and properties of TiAl(La)N coatings, International Journal of Refractory Metals and Hard Materials, 46 (2014) 173-180.
  22. C.P. Constable, D.B. Lewis, J. Yarwood, W.D. Munz, Raman microscopic studies of residual and applied stress in PVD hard ceramic coatings and correlation with X-ray diffraction (XRD) measurements, Surface and Coatings Technology, 184 (2004) 291-297.
  23. D.W. Hoffman, Stress and property control in sputtered metal films without substrate bias, Thin Solid Films, 107 (1983) 353-358.
  24. S.Y. Chun, Changes of crystal structure and microstructure of MoN coatings in accordance with inductively coupled plasma, Coatings, 11 (2021) 1351.
  25. G. Abadias, Stress and preferred orientation in nitride-based PVD coatings, Surface and Coatings Technology, 202 (2008) 2223-2235.
  26. K. Bobzin, E. Lugscheider, M. Maes, P. Immich, S. Bolz, Grain size evaluation of pulsed TiAlN nanocomposite coatings for cutting tools, Thin Solid Films, 515 (2007) 3681-3684.
  27. O. Storz, H. Gasthuber, M. Woydt, Tribological properties of thermal-sprayed Magneli-type coatings with different stoichiometries (TinO2n-1), Surface and Coatings Technology, 140 (2001) 76-81.
  28. S.Y. Chun, A comparative study of superhard TiN coatings deposited by DC and inductively coupled plasma magnetron sputtering, Journal of the Korean Institute of Surface Engineering, 46 (2013) 55-60.
  29. S.Y. Chun, Microstructure and mechanical properties of HfN films deposited by DC and inductively coupled plasma assisted magnetron sputtering, Journal of the Korean Institute of Surface Engineering, 53 (2020) 67-72.
  30. A.A. Elmustafa, D.S. Stone, Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity, Journal of the Mechanics and Physics of Solids, 51 (2003) 357-381.
  31. M. Wang, D. Wang, T. Kups, P. Schaaf, Size effect on mechanical behavior of Al/Si3N4 multilayers by nanoindentation, Materials Science and Engineering A, 644 (2015) 275-283.