• Title/Summary/Keyword: Mid-high temperature

Search Result 290, Processing Time 0.034 seconds

Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea (우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴)

  • Choi, Gwangyong;Kim, Junsu
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • The present study aims to characterize the synoptic climatic patterns of winter extreme low temperature events occurred in different regions of Korea based on daily temperature data observed at 61 weather stations under the supervision of the Korea Meteorological Administation and NCEP/NCAR reanalysis I data for the recent 40 years (1973~2012) period. Analyses of daily maximum and minimum temperatures below 10th percentile thresholds show that high frequencies of winter extreme low temperature events appear across the entire regions of Korea or in either the western or eastern half region divided by major mountain ridges at the 2~7 dayintervals particularly in the first half of the winter period (before mid-January). Composite analyses of surface synoptic climatic data including sea level pressure and wind vector reveal that 13 regional types of winter extreme low temperature events in Korea are closely associated with the relative location and intensity of both the Siberian high pressure and the Aleutian low pressure systems as well as major mountain ridges. Investigations of mid-troposphere (500 hPa) synoptic climatic charts demonstrate that the blocking-like upper troposphere low pressure system advecting the cold air from the Arctic toward the Korean Peninsula may provide favorable synoptic conditions for the outbreaks of winter extreme low temperature events in Korea. These results indicate that the monitoring of synoptic scale climatic systems in East Asia including the Siberian high pressure system, the Aleutian low pressure system and upper level blocking system is critical to the improvement of the predictability of winter extreme low temperature events in Korea.

  • PDF

Response of the Terrestrial Carbon Exchange to the Climate Variability (기후변동성에 따른 육상 탄소 순환의 반응)

  • Sun, Minah;Cho, Chun-Ho;Kim, Youngmi;Lee, Johan;Boo, Kyoung-On;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.163-175
    • /
    • 2017
  • The global terrestrial ecosystems have shown a large spatial variability in recent decades and represented a carbon sink pattern at mid-to-high latitude in Northern Hemisphere. However, there are many uncertainties in magnitude and spatial distribution of terrestrial carbon fluxes due to the effect of climate factors. So, it needs to accurately understand the spatio-temporal variations on carbon exchange flux with climate. This study focused on the effects of climate factors, .i.e. temperature, precipitation, and solar radiation, to terrestrial biosphere carbon flux. We used the terrestrial carbon flux that is simulated by a CarbonTracker, which performs data assimilation of global atmospheric $CO_2$ mole fraction measurements. We demonstrated significant interactions between Net Ecosystem Production (NEP) and climate factors by using the partial correlation analysis. NEP showed positive correlation with temperature at mid-to-high latitude in Northern Hemisphere but showed negative correlation pattern at $0-30^{\circ}N$. Also, NEP represented mostly negative correlation with precipitation at $60^{\circ}S-30^{\circ}N$. Solar radiation affected NEP positively at all latitudes and percentage of positive correlation at tropical regions was relatively lower than other latitudes. Spring and summer warming had potentially positive effect on NEP in Northern Hemisphere. On the other hand as increasing the temperature in autumn, NEP was largely reduced in most northern terrestrial ecosystems. The NEP variability that depends on climate factors also differently represented with the type of vegetation. Especially in crop regions, land carbon sinks had positive correlation with temperature but showed negative correlation with precipitation.

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.

Characteristics of new mid-high temperature adaptable oyster mushroom variety 『Heuktari』 for bottle culture (중고온성 병재배용 느타리 신품종 『흑타리』의 특성)

  • Choi, Jong In;Lee, Yun Hae;Ha, Tai Moon;Jeon, Dae Hoon;Chi, Jeong Hyun;Shin, Pyung Gyun
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.74-78
    • /
    • 2015
  • The 'Heuktari', a new mid-high temperature adaptable variety of oyster mushroom for the bottle culture, was bred by mating with monokaryons isolated from 'P11056' and 'MT07156'. The optimum temperature for the mycelial growth was $23{\sim}26^{\circ}C$ on PDA medium and that for the primordia formation and the growth of fruiting body of 'Heuktari' was $18{\sim}19^{\circ}C$ on sawdust substrate. In case of bottle cultivation, the period of mycelial growth was required about 30 days. In addition, the period of primordia formation and growth of fruiting body was 4 days and 5 days, respectively. In the characteristics of fruiting body, shape and color of pilei were round type and dark grayish brown, stipe color was white color and stipe shape was short and thick. The yield of fruiting bodies was 180 g/900 ml bottle which was 15% higher than that of Suhan-1ho. The gumminess and brittleness of stipe tissue were 110% and 140% stronger than those of Suhan-1ho, respectively.

Temperature distribution prediction in longitudinal ballastless slab track with various neural network methods

  • Hanlin Liu;Wenhao Yuan;Rui Zhou;Yanliang Du;Jingmang Xu;Rong Chen
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.83-99
    • /
    • 2023
  • The temperature prediction approaches of three important locations in an operational longitudinal slab track-bridge structure by using three typical neural network methods based on the field measuring platform of four meteorological factors and internal temperature. The measurement experiment of four meteorological factors (e.g., ambient temperature, solar radiation, wind speed, and humidity) temperature in the three locations of the longitudinal slab and base plate of three important locations (e.g., mid-span, beam end, and Wide-Narrow Joint) were conducted, and then their characteristics were analyzed, respectively. Furthermore, temperature prediction effects of three locations under five various meteorological conditions are tested by using three neural network methods, respectively, including the Artificial Neural Network (ANN), the Long Short-Term Memory (LSTM), and the Convolutional Neural Network (CNN). More importantly, the predicted effects of solar radiation in four meteorological factors could be identified with three indicators (e.g., Root Means Square Error, Mean Absolute Error, Correlation Coefficient of R2). In addition, the LSTM method shows the best performance, while the CNN method has the best prediction effect by only considering a single meteorological factor.

Effect of High Temperature on Leaf Physiological Changes as Chlorophyll composition and Photosynthesis Rate of Rice (벼 등숙기 고온이 잎의 엽록소구성과 광합성 및 생리적 변화에 미치는 영향)

  • Shon, Jiyoung;Kim, Junhwan;Lee, Chung-Kuen;Yang, Woonho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.266-272
    • /
    • 2015
  • High temperature impairs rice grain yield and quality. To understand the effect of high temperature on leaf physiological activity and grain filling, two cultivars of rice that Dongan and Ilpum were exposed to high temperature during ripening stage. Grain filling rate, perfect grain ratio and grain weight of high temperature ($27^{\circ}C{\pm}4^{\circ}C$) treated both rice cultivars were decreased than those of control temperature ($22^{\circ}C{\pm}4^{\circ}C$) treated. The reduction rates of grain filling ratio, perfect grain ratio and grain weight of high temperature treated to control treated rice were higher in Ilpum than Dongan. Chlorophyll contents of rice leaves under high temperature at early ripening stage were higher than those of control temperature, but those were slowly decreased with no difference between temperature treatment since at mid ripening stage. Although chlorophyll a/b ratio under high temperature was decreased from heading to 15 days after heading, that was gradually increased since 15 days after heading. Protein concentrations of rice leaves for ripening stage was a similar pattern with chlorophyll changes. The rate of photosynthesis at 14 days after heading under high temperature was higher than those of control temperature, but there was no difference at those of 7 and 34 days after heading between two temperature treatment. Free sugars under high temperature treated leaves were lower than control temperature. Consequently, these results exhibit that high temperature accelerate leaf physiological activity as chlorophyll synthesis and photosynthesis rate unlike the deterioration of grain filling.

Meteorological Factors Affecting Winter Particulate Air Pollution in Ulaanbaatar from 2008 to 2016

  • Wang, Minrui;Kai, Kenji;Sugimoto, Nobuo;Enkhmaa, Sarangerel
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.244-254
    • /
    • 2018
  • Ulaanbaatar, the capital of Mongolia, is subject to high levels of atmospheric pollution during winter, which severely threatens the health of the population. By analyzing surface meteorological data, ground-based LIDAR data, and radiosonde data collected from 2008 to 2016, we studied seasonal variations in particulate matter (PM) concentration, visibility, relative humidity, temperature inversion layer thickness, and temperature inversion intensity. PM concentrations started to exceed the 24-h average standard ($50{\mu}g/m^3$) in mid-October and peaked from December to January. Visibility showed a significant negative correlation with PM concentration. Relative humidity was within the range of 60-80% when there were high PM concentrations. Both temperature inversion layer thickness and intensity reached maxima in January and showed similar seasonal variations with respect to PM concentration. The monthly average temperature inversion intensity showed a strong positive correlation with the monthly average $PM_{2.5}$ concentration. Furthermore, the temperature inversion layer thickness exceeded 500 m in midwinter and overlaid the weak mixed layer during daytime. Radiative cooling enhanced by the basin-like terrain led to a stable urban atmosphere, which strengthened particulate air pollution.

Effect of Temperature on the Nitrogen Fixation Activity of Root Nodules of Melilotus suaveolens (전동싸리 근류의 질소고정에 대한 온도의 영향)

  • Park, Tae-Gyu;Jong Suk Song;In Seon Kim;Wwang Soo Nho;Bong Bo Seo;Hwa Sook Chung;Jae Hong Pak;Seung Dal Song
    • The Korean Journal of Ecology
    • /
    • v.18 no.3
    • /
    • pp.323-332
    • /
    • 1995
  • Effects of wintering and temperature on nitrogen fixation activity of nodules of Melilotus suaveolens Ledeb. grown in the field and growth chamber conditions were investigated. The biennial plants transfered to the growth chamber from winter field recovered the activity in 3 weeks of incubation and attained the maximum rate of $153{\mu}mol\;C_2H_4{\cdot}g$ fr wt $nodule^{-1}{\cdot}h^{-1}$ in 5 weeks. When root nodules which adapted to different temperatures, were pretreated with 10, 20 and $30^{\circ}C$ for 1 hour, and then transfered to $30^{\circ}C$, nitrogen fixation activity was promoted in the nodules exposed to lower field temperature ($12^{\circ}C$) with 1$0^{\circ}C$ pretreatment. M. suaveolens maintained nitrogen fixation activity in the wide range of temperatures, and was more tolerant to lower temperature than those of other woody leguminous plants, Diurnal changes of nodule activity showed increase with sunrise and decrease with sunset during spring and autumn, but the activity was inhibited during July and August because of high temperature with stron irradiation. Nitrogen fixation activity of annual plant appeared in mid-April, and showed two peaks (104 and 43 mol $C_2H_4{\cdot}g$ fr wt $nodule^{-1}{\cdot}h^{-1}$) in July and September, and then disappeared after October. Nitrogen fixation activity of biennial plant reappeared in mid-March after wintering and attained two peaks (102 and 82 ${\mu}mol\;C_2H_4{\cdot}g$ fr wt $nodule^{-1}{\cdot}h^{-1}$) in April and June of flowering period, and then disappeared after July due to plant withering by severe drought.

  • PDF

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

Imago's Flight and Larval Activities of Protaetia brevitarsis (Coleoptera: Scarabaedia) and Allomyrina dichotoma (Coleoptera: Dynastinae) (흰점박이꽃무지(딱정벌레목: 풍뎅이과)와 장수풍뎅이(딱정벌레목: 장수풍뎅이과)의 비상활동과 유충의 활동)

  • Kim, Ha-Gon;Kang, Kyung-Hong
    • Korean journal of applied entomology
    • /
    • v.45 no.2 s.143
    • /
    • pp.139-143
    • /
    • 2006
  • Imago's flight activities of Protaetia brevitarsis were from mid June to early September, and those of Allomyrina dichotoma were from mid June to late August. These activities were mainly influenced by amount and duration of rain. They were more active when there was small amount and short period of rain in a year. Distribution depth of the 3$^{rd}$ larvae of P. brevitarsis were not affected to the temperature. But A. dichotoma were sensitively react to the temperature, almost larvae were near the surface when high temperature. The distribution of P. brevitarsis was not affected by humidity, but most of A. dichotoma were near the surface when high humidity. Larvae of P. brevitarsis usually ate their dead individuals. When we supplied as food the pork, chicken, fresh mackerel, bread, apple, and pear. They took all of these food but larvae of A. dichotoma took only bread. Two species were lived in similar environment but those feeding habit was very different.