• Title/Summary/Keyword: Mid-frequency

Search Result 534, Processing Time 0.023 seconds

Study on the Characteristics of a Dash System Based on Test and Simulation for Vehicle Noise Reduction (승용차량의 소음저감을 위한 시험과 시뮬레이션을 이용한 대시 시스템의 특성 연구)

  • Yoo, Ji Woo;Chae, Ki-Sang;Cho, Jin Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1071-1077
    • /
    • 2012
  • Low frequency noises(up to about 200 Hz) such as booming are mainly caused by particular modes, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~1 kHz, as the number of modes rapidly increases, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated to reduce noise in this frequency region. Energy transmission loss(i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transmits both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet and sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

Drought Analysis using SC-PDSI and Derivation of Drought Severity-Duration-Frequency Curves in North Korea (SC-PDSI를 이용한 북한지역 가뭄분석 및 가뭄심도-지속기간-생기빈도 곡선의 유도)

  • Kang, Shin Uk;Moon, Jang Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.813-824
    • /
    • 2014
  • In this study, drought of North Korea are analyzed using drought index. 27 weather stations are selected and monthly precipitation and average temperature data are collected for drought analysis. SC-PDSI is used for drought analysis and calculated using collected weather data during 1984~2013 (30 years) in 27 weather stations. From the analysis result of historical drought event using drought index, it is confirmed that severe droughts occurred in the early and mid 2000's at most stations. Secondly, drought frequency analysis was carried out for the derivation of drought severity-duration-frequency (SDF) curves to enable quantitative evaluations of past historical droughts having been occurred in 6 stations (Pyeongyang, Hamheung, Cheongjin, Wonsan, Haeju, Sinuiju). This study can suggest return periods for historical major drought events by using derived SDF curves for each station. In the result, drought events in the early and mid 2000's had return periods of 20~50 years.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

The role of Under-balcony Speaker in the Multimedia Environmental (멀티미디어 환경에서 언더발코니 스피커의 역할)

  • Song, Deog-Geun;Park, Eun-Jin;Lee, Seon-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.86-89
    • /
    • 2015
  • Formula acoustic characteristics of the room with a double layer, are compared through simulation and actual measurement. The rear area of the under- balcony speakers will cause a delay difference between the main speaker. In the mid / bass parts do not generate sufficient pressure is lowered and comb-Filtering phenomenon occurs significantly. The lower right area of the under- balcony speakers and speaker distance is the sound pressure of the under- balcony speakers to around 2 ~ 3m bigger than the main speakers and the sound image matches the pulpit is broken. Also, under area is more than 5 ~ 6m from the balcony outside speakers and causes differ by more than 10dB lower than the under- balcony speakers depending on the local laws of Translator wins Well, the main speaker at mid / high frequency sounds do not enter the sound pressure variations will drop by a significant. Appropriate arrangement and the output of the speaker according to the position under the balcony, and output of the main speakers are requested to minimize this problem sound. The proper sound design direction for the under- balcony speakers must be presented in order to improve the lower balcony area more pleasant acoustic environment.

The First Report on the Afternoon E-Region Plasma Density Irregularities in Middle Latitude

  • Yang, Tae-Yong;Kwak, Young-Sil;Lee, Jaewook;Park, Jaeheung;Choi, Seonghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • We report, for the first time, the afternoon (i.e., from noon to sunset time) observations of the northern mid-latitude E-region field-aligned irregularities (FAIs) made by the very high frequency (VHF) coherent backscatter radar operated continuously since 29 December 2009 at Daejeon (36.18°N, 127.14°E, 26.7°N dip latitude) in South Korea. We present the statistical characteristics of the mid-latitude afternoon E-region FAIs based on the continuous radar observations. Echo signal-to-noise ratio (SNR) of the afternoon E-region FAIs is found to be as high as 35 dB, mostly occurring around 100-135 km altitudes. Most spectral widths of the afternoon echoes are close to zero, indicating that the irregularities during the afternoon time are not related to turbulent plasma motions. The occurrence of afternoon E-regional FAI is observed with significant seasonal variation, with a maximum in summer and a minimum in winter. Furthermore, to investigate the afternoon E-region FAIs-Sporadic E (Es) relationship, the FAIs have also been compared with Es parameters based on observations made from an ionosonde located at Icheon (37.14°N, 127.54°E, 27.7°N dip latitude), which is 100 km north of Daejeon. The virtual height of Es (h'Es) is mainly in the height range of 105 km to 110 km, which is 5 km to 10 km greater than the bottom of the FAI. There is no relationship between the FAI SNR and the highest frequencies (ftEs) (or blanket frequencies (fbEs)). SNR of FAIs, however, is found to be related well with (ftEs-fbEs).

Design and Sensitivity Analysis of Input Shaping Filter in the Z-domain (Z-영역에서 입력성형기의 설계와 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1854-1862
    • /
    • 2000
  • Input shaping method is to convolute input shaper, which is sequence of impulses, with reference input command not to excite the natural frequency of system. To reduce residual vibration for the ch ange of frequency, the number of impulses should be increased. Until now, amplitudes and time interval of those has been searched from the derivative of residual vibration. However, if time interval of impulses is fixed as the half of vibration period of system, input shaper H(z) in z-domain becomes (I-pz-1)n/K in which increasing n is the mean that robustness for change of parameter is improved. Also, design of many types of input shapers in z-domain is very easy because sensitivity curve is displayed with $\mid$H(z)zn$\mid$$\times$100. In the z-domain, EI(Extra-Insensitive) input shaper could be designed without solving nonlinear simultaneous equations as design in continuous time domain. In addition to, the design possibility of input shaper for a damped system was shown.

Distortion Compensation of WDM Signals with initial frequency chirp in the Modified Mid-Span Spectral Inversion Technique

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • In this paper, the optimal value of optical phase conjugator (OPC) position and the optimal values of dispersion coefficients of fiber sections for the best compensation of the distorted WDM signals with frequency chirp of -1 are induced to alternate with the symmetrical distributions of power and local dispersion with respect to OPC, which is difficult to form in real optical link due to fiber attenuation in mid-span spectral inversion (MSSI) technique. It is confirmed that the Q-factors of total channels of -18.5 dBm launching light power exceed 16.9 dB, which value corresponds to 10-12 BER, by applying the induced optimal parameter values into 16 channels ${\times}$ 40 Gbps WDM system, on the other hand the Q-factors of only 9 channels exceed that value in WDM system with the conventional MSSI technique. Thus, it is expected to expand the availability of OPC in WDM system through the using of the optimal parameter values that are induced by the proposed method in this paper, without the symmetrical distributions of power and local dispersion.

Optimal Position of Optical Phase Conjugator for Compensation of Distorted WDM Signals with Initial Frequency Chirp

  • Lee Seong-Real;Choi Byung-Ha;Chung Myung-Rae
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.36-42
    • /
    • 2005
  • In this paper, the optimal position of optical phase conjugator(OPC) excellently compensating distorted WDM channels with initial frequency chirp due to both chromatic dispersion and self phase modulation(SPM) is numerically investigated. Highly-nonlinear dispersion shifted fiber(HNL-DSF) is used as a nonlinear medium of OPC in order to widely compensate WDM signal band. It is confirmed that if the OPC position was shifted from mid-way of total transmission length dependence on the initial frequency chirp as well as modulation format and fiber dispersion coefficient, it is possible to cancel the performance degradation owing to the initial frequency chirp. Using proposed configuration, it is possible to remove all in-line dispersion compensator, reducing span losses and system costs in the long-haul broadband WDM systems.

Evaluation of the Ambient Temperature Effect for the Autonomic Nervous Activity of the Young Adult through the Frequency Analysis of the Heart Rate Variability (심박변이율 주파수 분석을 통한 실내온도에 따른 건강한 성인의 자율신경계 활동 평가)

  • Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1240-1245
    • /
    • 2015
  • The purpose of this paper is to investigate the autonomic nervous system activity in various ambient temperatures. To evaluate autonomic function, we use the frequency domain analysis of heart rate variability such as FFT(fast fourier transformation), AR(Auto-Regressive) model and Lomb-Scargle peridogram. HRV(heart rate variability) is calculated by using ECG recorded from 3 different temperature room which temperature is controlled in 18℃(low), 25℃(mid) and 38℃(high), respectively. Totally 22 subjects were participated in the experiment. In the results, the most significant autonomic changes caused by temperature load were found in the HF(high frequency) component of FFT and AR model. And the HF power is decreased by increasing temperature. Significance level was increased by increasing the difference of temperatures.

The efficiency Analysis of study using brainwave measurement device (Biopac 뇌파측정 장치를 이용한 학습의 효율성 분석)

  • An, Young-Jun;Lee, Chung-Heon;Park, Mun-Kyu;Ji, Hoon;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.951-953
    • /
    • 2015
  • Learning for thinking says the behavior of the organism changes as a result of practice or experience. It is very difficult to identify focusing ability objectively when students study. But, brain of the body is not so. EEG signal means continuously electric records of brain potential variation between two points on the scalp when brain activities take place. In types of EEG, there are delta(0~4Hz), theta(4~8Hz), alpha(8~13Hz), beta(13~30Hz) and gamma waves(30~50Hz). SMR waves and Mid-beta waves appear when focused for studying. Part for the most influence on concentrating reported that Mid-beta waves. In relation to brain activities, EEG has been actively researched for evaluating brain focus index system during learning and study. So, By using Biopac system for this study, measured brain wave was converted into FFT for extracting Mid-beta domain signals that are related to learning after giving focus invoked subjects to a small number of people. When concentrating, we measured the change in the power of the Mid-beta frequency domain and presented a correlation. Based on these results, we analyzed whether students are concentrated objectively on learning or not. and hope to offer more efficient learning method.

  • PDF