• 제목/요약/키워드: Microwave sintered zirconia

검색결과 8건 처리시간 0.031초

Comparison of the optical properties of pre-colored dental monolithic zirconia ceramics sintered in a conventional furnace versus a microwave oven

  • Kim, Hee-Kyung;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권5호
    • /
    • pp.394-401
    • /
    • 2017
  • PURPOSE. The purpose of this study was to compare the optical properties of pre-colored dental monolithic zirconia ceramics of various thicknesses sintered in a microwave and those in a conventional furnace. MATERIALS AND METHODS. A2-shade of pre-colored monolithic zirconia ceramic specimens ($22.0mm{\times}22.0mm$) in 3 thickness groups of 0.5, 1.0, and 1.5 mm were divided into 2 subgroups according to the sintering methods (n=9): microwave and conventional sintering. A spectrophotometer was used to obtain CIELab color coordinates, and translucency parameters and CIEDE2000 color differences (${\Delta}E_{00}$) were measured. The relative amount of monoclinic phase ($X_m$) was estimated with x-ray diffraction. The surface topography was analyzed by atomic force microscope and scanning electron microscope. Statistical analyses were conducted with two-way ANOVA (${\alpha}=.05$). RESULTS. There were small interaction effects on CIE $L^*$, $a^*$, and TP between sintering method and thickness (P<.001): $L^*$ (partial eta squared ${{\eta}_p}^2=0.115$), $a^*$ (${{\eta}_p}^2=0.136$), and TP (${{\eta}_p}^2=0.206$), although higher $b^*$ values were noted for microwave sintering regardless of thickness. Color differences between two sintering methods ranged from 0.52 to 0.96 ${\Delta}E_{00}$ units. The $X_m$ values ranged from 7.03% to 9.89% for conventional sintering, and from 7.31% to 9.17% for microwave sintering. The microwave-sintered specimen demonstrated a smoother surface and a more uniform grain structure compared to the conventionally-sintered specimen. CONCLUSION. With reduced processing time, microwave-sintered pre-colored dental monolithic zirconia ceramics can exhibit similar color perception and translucency to those by conventional sintering.

Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering

  • Saka, Muhammet;Yuzugullu, Bulem
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.485-493
    • /
    • 2013
  • PURPOSE. To evaluate the effects of surface treatments on shear bond strength (SBS) between microwave and conventionally sintered zirconia core/veneers. MATERIALS AND METHODS. 96 disc shaped Noritake Alliance zirconia specimens were fabricated using YenaDent CAM unit and were divided in 2 groups with respect to microwave or conventional methods (n=48/group). Surface roughness (Ra) evaluation was made with a profilometer on randomly selected microwave (n=10) and conventionally sintered (n=10) cores. Specimens were then assessed into 4 subgroups according to surface treatments applied (n=12/group). Groups for microwave (M) and conventionally (C) sintered core specimens were as follows; $M_C$,$C_C$: untreated (control group), $M_1,C_1:Al_2O_3$ sandblasting, $M_2,C_2$:liner, $M_3,C_3:Al_2O_3$ sandblasting followed by liner. Veneer ceramic was fired on zirconia cores and specimens were thermocycled (6000 cycles between $5^{\circ}-55^{\circ}C$). All specimens were subjected to SBS test using a universal testing machine at 0.5 mm/min, failure were evaluated under an optical microscope. Data were statistically analyzed using Shapiro Wilk, Levene, Post-hoc Tukey HSD and Student's t tests, Two-Way-Variance- Analysis and One-Way-Variance-Analysis (${\alpha}$=.05). RESULTS. Conventionally sintered specimens ($1.06{\pm}0.32{\mu}m$) showed rougher surfaces compared to microwave sintered ones ($0.76{\pm}0.32{\mu}m$)(P=.046), however, no correlation was found between SBS and surface roughness (r=-0.109, P=.658). The statistical comparison of the shear bond strengths of $C_3$ and $C_1$ group (P=.015); $C_C$ and $M_C$ group (P=.004) and $C_3$ and $M_3$ group presented statistically higher (P=.005) values. While adhesive failure was not seen in any of the groups, cohesive and combined patterns were seen in all groups. CONCLUSION. Based on the results of this in-vitro study, $Al_2O_{3-}$ sandblasting followed by liner application on conventionally sintered zirconia cores may be preferred to enhance bond strength.

Microwave로 가열한 알루미나의 소결 및 입성장 거동 (Densification and rain Growth of Alumina Heated by Microwave)

  • 김도형;오성록;김종희
    • 한국세라믹학회지
    • /
    • 제29권4호
    • /
    • pp.305-311
    • /
    • 1992
  • As compared with conventional sintering, rapid heating in microwave system could enhance sinterability and final properties of alumina with a very short sintering time. In this study microwave sintering was performed using zirconia brick as a reaction chamber which was positioned in a 2.45 GHz(700 W) multimode microwave cavity. Microwave-sintered alumina showed high density and smaller grain size than conventionally sintered alumina because the ratio of densification rate/grain growth rate was increased by rapid heating.

  • PDF

BaTiO$_3$ 후막의 마이크로파 소성 및 전기적 특성 (Microwave Sintering Behavior and Electrical Properties of BaTiO$_3$ Thick Films)

  • 배강;김호기
    • 한국세라믹학회지
    • /
    • 제35권11호
    • /
    • pp.1197-1202
    • /
    • 1998
  • To check the possibility for microwave sintering of MLCC(multi layer ceramic capacitor) the tape cast-ed BaTiO3 thick films in zirconia insulation box were sintered by the domestic microwave oven. Microwave sintered samples had higher density lower porosity than coventionally sintered ones. but they didn't show Z5U electrical properties due to short sintering time about 15 minutes.

  • PDF

Microwave Application in the Heating of Low-Loss Ceranmic Materials

  • Park, Seong-S.;Lee, Yoon-B.;Ryu, Su-C.;Jang, Youn-S.;Park, Hong-C.
    • 한국재료학회지
    • /
    • 제6권6호
    • /
    • pp.576-584
    • /
    • 1996
  • The zirconia-alumina composite, a low loss material, was sucessfully sintered using a 2.45 GHz microwave radiation. The dense zirconia was used as a microware coupling aid. The effect of microwave power level on the heating rates of samples and the feasibility of microwave energy use in processign ceramec materials were obtained. It was also obtained how to accurately measure the temperature. According to the microwave heating theory, heating mechanisms were discussed.

  • PDF

마이크로 웨이브 소결 과정이 CAD/CAM 지르코니아 코아의 적합도에 미치는 영향 (The Influence of Microwave Sintering Process on the Adaptation of CAD/CAM Zirconia Core)

  • 김근배;김지환;이근우
    • 구강회복응용과학지
    • /
    • 제25권2호
    • /
    • pp.95-107
    • /
    • 2009
  • 본 연구의 목적은 전통적인 소결 방법과 마이크로 웨이브 소결 방법에 의해 제작된 지르코니아 코아의 내부 및 변연 적합도를 알아보는 것이다. 본 실험은 기존의 소결로를 이용하는 $3M^{(R)}$의 Lava(LAV), $Kavo^{(R)}$사의 Everest(EVE), $Cerasys^{(R)}$ CAD/CAM 시스템(CER)과 마이크로웨이브 소결로를 이용하는 Dent. $solution^{(R)}$사의 CAD/CAM 시스템(DEN)에서 시스템별로 12개씩의 코아를 제작하고 실리콘 접착제를 이용하여 금속 다이에 부착시켰다. $Skyscan^{(R)}$ 1076 미세 단층 촬영기를 이용해 각각의 시편을 촬영한 후 재구성하였다. 각 시편에 대해 B-L상, M-D상 절단면 및 치아 장축에 대한 횡단면을 구해내고 각각의 단면에 대해 변연 간격, 축면 간격, 교합면 간격을 측정하였다. 실험에 대한 결과는 다음과 같다. 1. 변연 간격은 EVE가 $36.20{\mu}m$로 가장 작았고, LAV는 $47.67{\mu}m$, DEN는 $52.47{\mu}m$, CER은 $54.63{\mu}m$를 나타내었다. 2. 축면 간격은 EVE가 $63.49{\mu}m$로 가장 큰 값을 나타내었으나 네군간에는 유의차는 없었다. 3. 교합면 간격은 DEN이 $77.06{\mu}m$으로 가장 작은 값을 나타내었으며, EVE와 CER은 $100{\mu}m$를 넘는 값으로 다른 두군과 유의차를 보였다. 본 연구에서 마이크로웨이브 소결을 통해 제작된 CAD/CAM 지르코니아 코아는 임상적으로 허용할 만한 변연 간격 및 축면 간격, 교합면 간격을 보여 주었다.

Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency

  • Kim, Mi-Jin;Ahn, Jin-Soo;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권2호
    • /
    • pp.161-166
    • /
    • 2013
  • PURPOSE. This study aimed to identify the effects of the sintering conditions of dental zirconia on the grain size and translucency. MATERIALS AND METHODS. Ten specimens of each of two commercial brands of zirconia (Lava and KaVo) were made and sintered under five different conditions. Microwave sintering (MS) and conventional sintering (CS) methods were used to fabricate zirconia specimens. The dwelling time was 20 minutes for MS and 20 minutes, 2, 10, and 40 hours for CS. The density and the grain size of the sintered zirconia blocks were measured. Total transmission measurements were taken using a spectrophotometer. Two-way analysis of variance model was used for the analysis and performed at a type-one error rate of 0.05. RESULTS. There was no significant difference in density between brands and sintering conditions. The mean grain size increased according to sintering conditions as follows: MS-20 min, CS-20 min, CS-2 hr, CS-10 hr, and CS-40 hr for both brands. The mean grain size ranged from 347-1,512 nm for Lava and 373-1,481 nm for KaVo. The mean light transmittance values of Lava and KaVo were 28.39-34.48% and 28.09-30.50%, respectively. CONCLUSION. Different sintering conditions resulted in differences in grain size and light transmittance. To obtain more translucent dental zirconia restorations, shorter sintering times should be considered.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.