• Title/Summary/Keyword: Microwave Devices

Search Result 220, Processing Time 0.022 seconds

A Numerical Model of EM field calculation using Absorbing Boundary Conditions (Absorbing Boundary Condition을 이용한 전자파 수치해석)

  • Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.78-81
    • /
    • 1990
  • The Engquist-Majdas second-order Absorbing Boundary Conditions (ABC) has been combined with the finite element formulation replacing the boundary integral equations in the hybrid finite-boundary element method (HEM). The method is applied to electromagnetic field radiation problems, especially to the microwave launcher, in order to verify the finite element formulation with the ABC's. The results with ABC are in good agreement with those of HEM. In order to see the applicability of the ABC, a simplified microwave oven utilizing ABC and an absorbing material are provided. The EM field distribution of the model is visualized. This method could be a useful analysis and design tool for EM field devices.

  • PDF

Formulation of the Green's Functions for Coplanar Waveguide Microwave Devices as Genetic Algorithm-Based Complex Images

  • Han, DaJung;Lee, ChangHyeong;Kahng, Sungtek
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1600-1604
    • /
    • 2017
  • A new Complex Image Method based on Genetic Algorithm (GA) is proposed to calculate the Green's functions of CPW (coplanar waveguide)-type microwave components and antennas. The closed-forms of the spectral-domain integrals are obtained by the GA, avoiding the conventional procedures of the tedious linear algebra and the sampling conditions sensitive to the complex-variable sampling paths adopted in the Prony's and GPOF methods. The proposed method is compared with the numerical Sommerfeld Integral, which results in good agreement.

Modeling of Capacitive Coplanar Waveguide Discontinuities Characterized with a Resonance Method (공진 주파수 측정방법을 이용한 Coplanar Waveguide 용량성 불연속 구조 설계)

  • Kim, Dong-Young;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.181-184
    • /
    • 2001
  • A coplanar waveguide(CPW) on a dielectric substrate consists of a center strip conductor with semi-infinite ground planes on either side. This type of waveguide offers several advantages over microstrip line. It facilitates easy shunt as well as series mounting of active and passive devices. It eliminates the need for wraparound and via holes, and it has a low radiation loss. These, as well as several other advantages, make CPW ideally suited for microwave integrated circuit applications. However, very little information is available in the literature on models for CPW discontinuities. This lack of sufficient discontinuity models for CPW has limited the application of CPW in microwave circuit design. We presented for the characteristics of coplanar waveguide open end capacitance and series gap capacitance. Measurements by utilizing the resonance method were made and the experimental data confirmed the validity of theories. The relationships between the CPW capacitances and the physical dimensions were studied.

  • PDF

Wideband Characterization of Angled Double Bonding Wires for Microwave Devices (초고주파 소자를 위한 사잇각을 갖는 이중 본딩와이어의 광대역 특성 해석)

  • 윤상기;이해영
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.98-105
    • /
    • 1995
  • Recent microwave IC's reach to the extent of high operating frequencies at which bonding wires limit their performance as dominant parasitic components. Double bonding wires separated by an internal angle have been firstly characterized using the Method of Moments with the incorporation of the ohmic resistance calculated by the phenomenological loss equivalence method. For a 30$^{\circ}$ internal angle, the calculated total reactance is 45% less than that of a single bonding wire due to the negative mutual coupling effect. The radiation effect has been observed decreasing the mutual inductance, whereas for parallel bonding wires it greatly increases the mutual inductance. This calculation results can be widely used for designing and packaging of high frequency and high density MMIC's and OEIC's.

  • PDF

Electrode Analysis and Design of LiNbO$_{3}$ Optical Modulator with Coplanar Waveguide-type (COPLANAR WAVEGUIDE-형 LiNbO$_{3}$ 광변조기 전극설계 및 분석)

  • 김성구;윤형도;윤대원;유용택
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.80-90
    • /
    • 1995
  • In this paper, methods of designing CPW(coplanar waveguide) traveling-wave electrodes are described and their properties are discussed. Especially, the effect of buffer layer thickness to the microwave characteristics of the CPW electrodes are studied in detail. The trade-off relationship between buffer layer thickness and electro-optical properties of the devices are clearly revealde. The microwave characteristics and driving voltage can be further improved by using selected parameters suggested in this paper. To reduce time and effort in designing CPW electrode structure, exact analytical models are proposed.

  • PDF

Analytic Model of Spin-Torque Oscillators (STO) for Circuit-Level Simulation

  • Ahn, Sora;Lim, Hyein;Shin, Hyungsoon;Lee, Seungjun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Spin-torque oscillators (STO) is a new device that can be used as a tunable microwave source in various wireless devices. Spin-transfer torque effect in magnetic multilayered nanostructure can induce precession of magnetization when bias current and external magnetic field are properly applied, and a microwave signal is generated from that precession. We proposed a semi-empirical circuit-level model of an STO in previous work. In this paper, we present a refined STO model which gives more accuracy by considering physical phenomena in the calculation of effective field. Characteristics of the STO are expressed as functions of external magnetic field and bias current in Verilog-A HDL such that they can be simulated with circuit-level simulators such as Hspice. The simulation results are in good agreement with the experimental data.

A Design of Multi-layer Planar Type Microwave Filter (다층 평면형 초고주파 필터의 설계)

  • Lee Hong-Seop;Hwang Hee-Yong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • In this paper, a planar type bandpass filter in multilayered PCB is presented. The multilayered PCB structure has some advantages on fabricating microwave devices such as the size reduction and ability of tight coupling by folding or embedding. The proposed BPF has two transmission zeros at the both sides of the center frequency by using independent electric and magnetic coupling structure. The designed BPF with four layer teflon PCBs of dielectric constant 2.94 has dimensions of 24x20x1.524 in mm, center frequency of 2.47GHz and bandwidth of about l00MHz. A good agrement is achieved between the measured result and the simulated one. The influences of air gaps between the layers are also analyzed and presented.

  • PDF

An analysis of microwave active circuit using the extended FDTD method (확장된 시간 유한 차분법을 이용한 초고주파 능동 회로의 해석)

  • 박재석;남상식;장상건;이혁재;진년강
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2736-2743
    • /
    • 1997
  • In this paper, the extended finite difference time domain(FDTD) algorithm is applied to carry out full-wave analysis of a microwave amplifier circuit. The active device included in the amplifier is modeled by equivalent current sources. Equivalent current sources are characterizing interaction between electronmagnetic waves and active devices and can be directly incorporated into the FDTD algorithm. To confirm this analysis, an amplifier is implemented. The FDTD simulation shows good agreement with measured results.

  • PDF

Development of Transmitter/Receiver Front-End Module with Automatic Tx/Rx Switching Scheme for Retro-Reflective Beamforming

  • Cho, Young Seek
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.221-226
    • /
    • 2019
  • In this work, a transmitter/receiver front-end module (T/R FEM) with an automatic Tx/Rx switching scheme for a 2.4 GHz microwave power transfer is developed for a retro-reflective beamforming scheme. Recently, research on wireless power transfer techniques has moved to wireless charging systems for mobile devices. Retro-reflective beamforming is a good candidate for tracking the spatial position of a mobile device to be charged. In Tx mode, the T/R FEM generates a minimum of 1 W. It also comprises an amplitude and phase monitoring port for transmitting RF power. In Rx mode, it passes an Rx pilot signal from a mobile device to a digital baseband subsystem to recognize the position of the mobile device. The insertion loss of the Rx signal path is 4.5 dB. The Tx and Rx modes are automatically switched by detecting the Tx input power. This T/R FEM is a design example of T/R FEMs for wireless charging systems based on a retro-reflective beamforming scheme.

Fabrication of Inductors, Capacitors and LC Hybrid Devices using Oxides Thin Films (산화물 박막을 이용한 인덕터, 캐패시터 및 LC 복합 소자 제조)

  • Kim, Min-Hong;Yeo, Hwan-Guk;Hwang, Gi-Hyeon;Lee, Dae-Hyeong;Kim, In-Tae;Yun, Ui-Jun;Kim, Hyeong-Jun;Park, Sun-Ja
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.175-179
    • /
    • 1997
  • bliniaturization oi microwave circuit components is an important issue with the development in the mobile communication. Capacitors, inductors anti hybrid devices of these are building blocks of electric circuits, and the fabrication of these devices using thin film technology will influence on the miniaturization of electronic devices In this paper, we report the successful fabrication of the inductors, capacitors and LC hybrid devices using a ferroelectric and a ferromagnetic oxide thin iilm. Au, stable at high temperatures in oxidizing ambient, is patterned by lift-off process, and oxide thin films are deposited by ion beam sputtering and chemical vapor deposition. These devices are characterized by a network analyzer in 0.5-15GtIz range We got the inductance of 5nH, capacitance oi 10, 000 pF and resonant frequencies of $10^{6}-10^{9}Hz$.

  • PDF