• 제목/요약/키워드: Microstructure development

검색결과 654건 처리시간 0.025초

Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Toghroli, Ali
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.191-202
    • /
    • 2020
  • The article brings the study of nonlocal, surface and the couple stress together to apparent the frequency retaliation of FG nanobeams (Functionally graded). For the examination of frequency retaliation, the article considers the accurate spot of neutral axis. This article aims to enhance the coherence of proposed model to accurately encapsulate the significant effects of the nonlocal stress field, size effects together with material length scale parameters. These considered parameters are assimilated through what are referred to as modified couple stress as well as nonlocal elasticity theories, which encompasses the stiffness-hardening and softening influence on the nanobeams frequency characteristics. Power-law distribution is followed by the functional gradation of the material across the beam width in the considered structure of the article. Following the well-known Hamilton's principle, fundamental basic equations alongside their correlated boundary conditions are solved analytically. Validation of the study is also done with published result. Distinct parameters (such as surface energy, slenderness ratio, as nonlocal material length scale and power-law exponent) influence is depicted graphically following the boundary conditions on non-dimensional FG nanobeams frequency.

대형 티타늄 합금 용기의 고온 금형 성형 공정 개발 (Development of Hot die Forging Process for Large-size Titanium Alloy Container)

  • 권일근;김대순;박태동;박홍석;홍성석;심인옥
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.50-58
    • /
    • 2010
  • In order to successfully implement hot die forging process for the large-size titanium alloy products, it is necessary to devise a customized heating method for the billets and the die tools, as well as the die tool design. This study aims at establishing a hot die forging process of the large-size titanium alloy container products by applying the warm die, semi-hot die and hot die forging process step-wise. To accomplish this purpose, forging mechanism and the die tools were designed considering the strength of die materials at the given die heating temperature. The movable heating devices for the billet and the die tools were also introduced to prevent overcooling of billet and die tools. To verify the applicability of the designed forging process, real-size forging tests were carried out and the quality of forged products, including dimension, surface condition, microstructure and the mechanical properties was evaluated.

Fe-8 wt%Ni 나노합금분말 사출성형체의 소결특성 및 표면조도 (Surface Roughness and Sintering Characteristics of Fe-8 wt%Ni Component Fabricated by PIM)

  • 차범하;이재성
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.342-350
    • /
    • 2009
  • Development of nanoparticulate materials technology is essential to processing of highly functional nanoparticulate materials and components with small and complex shape. In this paper, the effect of particle size on surface roughness and shrinkage of sintered Fe-8 wt%Ni nanopowder components fabricated by PIM were investigated. The Fe-8 wt%Ni nanopowder was prepared by hydrogen reduction of ball-milled Fe$_2$O$_3$-NiO powder. Feedstock of nanopowder prepared with the wet-milled powder was injection molded into double gear shaped part at 120$^{\circ}C$. After sintering, the sintered part showed near full densified microstructure having apparently no porosity (98%T.D.). Surface roughness of sintered bulk using nanopowder was less than 815 nm and it was about seven times lower than 7 $\mu$m that is typically obtainable from a sintered part produced from PIM.

저항점용접과 $CO_2$ 플러그용접의 피로거동 연구 (The comparision of fatigue behavior of $CO_2$ plug weld and resistance spot weld)

  • 정원욱;정연수;강성수
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.554-561
    • /
    • 1998
  • Vehicle body structures are formed by thousands of spot welds and fatigue failure of vehicle structures occur near the spot welds after driving a long way at a durability test road. It is necessary to know accurately the reason of the fatigue failure of the spot weld in the developing stage in order to reinforce it. Many investigations have been done regarding the strength of spot welded joints, contributing to understand its fatigue strength. In developing process, a fatigue failed spot welded area can be repaired by $CO_2$ welding or another method to continue the test. To know the effect of reinforcing these welds, several methods of welding were analyzed and compared to spot welding. With the results of this test, the appropriate repair method can be used instead of spot welding during the development of new car and best design guide can be given for the strength. In this study, fatigue and static tensile tests are made and microstructure is investigated for the purpose of estimating the strength of welded joints by using spot welded and $CO_2$ plug welded specimens. The tested specimens are of two types : Tensile-shear type(TS) and L-tension type(LT).

The Development of Aluminum Alloy Piston for Two-Stroke Cycle Engine by Powder Forging

  • Park, Chul-Woo
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.173-177
    • /
    • 2013
  • The purpose of this paper is to investigate the influences on mechanical properties of two-stroke cycle motor pistons manufactured by casting, conventional forging and powder forging, through the comparison of characteristics, merits and disadvantages of each forming technology. For each forming technology, the optimal process parameters were determined through the experiments for several conditions, and microstructure, hardness, tensile strength and elongation of pistons are compared and analyzed. In conventional forging process, material temperature was $460^{\circ}C$ and the die temperature was $210^{\circ}C$ for the Al 4032. The optimal condition was found as solution treatment under $520^{\circ}C$ for 5 hours, quenching with $23^{\circ}C$ water, and aging under $190^{\circ}C$ for 5 hours. In powder forging process, the proper composition of material was determined and optimal sintering conditions were examined. From the experiment, 1.5% of Si contents on the total weight, $580^{\circ}C$ of sintering temperature, and 25 minutes of sintering time were determined as the optimal process condition. For the optimal condition, the pistons had 76.4~78.3 [HRB] of hardness, and 500 [MPa] of tensile strength after T6 heat treatment.

초소성 하이드로포밍과 확산 접합의 연속 공정을 위한 Ti-3Al-2.5V 튜브의 열처리 미세조직 (Heat-Treated Microstructures of Ti-3Al-2.5V Tube for the Successive Process of Superplastic Hydroforming and Diffusion Bonding)

  • 배근수;이상용
    • 열처리공학회지
    • /
    • 제29권2호
    • /
    • pp.56-61
    • /
    • 2016
  • Heating experiments using the Ti-3Al-2.5V tube materials in a vacuum furnace have been performed to investigate a pertinent range of working temperatures and holding times for the development of the successive or simultaneous operation of superplastic hydroforming and diffusion bonding. The specimens were heated at $820^{\circ}C$, $870^{\circ}C$ and $920^{\circ}C$ respectively. Holding times at each temperature were varied up to 4 hours. Holding times longer than 1 hour were selected to consider the diffusion bonding process after or during the hydroforming process in the superplastic state. Grain sizes were varied from $5.7{\mu}m$ of the as-received tube to $9.2{\mu}m$ after heating at $870^{\circ}C/4hours$. Homogeneus granular microstructures could be maintained up to $870^{\circ}C$, while microstructures at $920^{\circ}C$ showed no more granular type.

자동차 구동용 PEMFC 금속계 분리판 개발 (Development of Metallic Bipolar Plate for Automotive PEMFC)

  • 전유택;정경우;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.321-325
    • /
    • 2005
  • Bipolar plate is the main part with MEA in automotive PEMFC. It must have a good electrical conductivity and excellent corrosion resistance, be cost effective. Therefore, stainless steels have been studied by many researchers because of its corrosion resistance and cost benefits. But their properties are not sufficient for the application to bipolar plate for automotive PEMFC. In this work, we have performed stamping using various commercial stainless steels to select candidate material for biploar plate and to derive design parameters for stamping simulation. The results showed that a small curvature at the corner of flow field is more favorable due to easier a plastic deformation. Stamping process was simulated by changing surface condition, and the size and angle of channel. The optimum shape and spring back phenomena were evaluated. Surface coating was applied to increase the corrosion resistance and electrical conductivity of stainless steel. The electrical interfacial resistance was 10 to $15m{\Omega}cm^2$ under clamping force of 150psi. But corrosion resistance of coating on the stainless steel was not good due to the unstableness of microstructure.

  • PDF

허니컴 구조 SiC 발열체 성능 평가 시뮬레이션 (Simulation of Honeycomb-Structured SiC Heating Elements)

  • 이종혁;조영재;김찬영;권용우;공영민
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.450-454
    • /
    • 2015
  • A simulation method to estimate microstructure dependent material properties and their influence on performance for a honeycomb structured SiC heating element has been established. Electrical and thermal conductivities of a porous SiC sample were calculated by solving a current continuity equation. Then, the results were used as input parameters for a finite element analysis package to predict temperature distribution when the heating element was subjected to a DC bias. Based on the simulation results, a direction of material development for better heating efficiency was found. In addition, a modified metal electrode scheme to decelerate corrosion kinetics was proposed, by which the durability of the water heating system was greatly improved.

Bi(2223)/Ag 다심 초전도 접합선재의 제조 (Development and fabrication of multi-filamentary Bi(2223)/Ag jointed tape)

  • 김규태;김정호;김호진;이동욱;주진호;나완수
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.172-175
    • /
    • 2003
  • Critical current ratio and n-value of Bi(2223)/Ag superconducting joint tape were measured as a function of uniaxial pressure. In the superconducting joint method, MM and MSM joint were used ; MM joint is direct connection of two -multi filamentary tapes, and MSM is connection of them by using a single -filamentary tape. It was observed that the critical current ratio(CCR) for jointed tapes was not dependent on the uniaxial pressure but joining methods. The n-value of jointed tapes has similar trends with that of the CCR. Especially, double MSM joint showed the highest electrical properties as 63.4-76.0%(CCR) and 3.5-5.1 (n-value). It is considered that the improvements are due to the better inter connections of multifilaments by two single filamentary tapes on both sides.

  • PDF

$MgB_2$ 초전도체의 합성에 미치는 고에너지 밀링에 의한 초기 보론 분말의 특성 (Characterization of the High Energy Milled Boron Precursor Powders in the Synthesis of $MgB_2$ Superconductor)

  • 이지현;신승용;김찬중;박해웅
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.74-79
    • /
    • 2007
  • We characterized the highly refined boron precursor powders which were attrition milled for different milling times. $MgB_2$ powder precursor was formed from elemental crystalline Mg and amorphous B powder. The microstructure was investigated by SEM. SEM results indicate that the size of the milled powders was reduced with increasing milling time, which were varied from 0 to 8 hours. We also studied thermal behavior of the starting precursor by DSC as a function of milling time. The thermal behavior of the powder precursors was influenced by milling time. In order to determine the thermal events at DSC peaks, we annealed the milled powder mixture at $600^{\circ}C$ and $650^{\circ}C$ under protective gas and then analyzed the formation of $MgB_2$ by the XRD. We observed that superconducting $MgB_2$ phase was formed at lower temperature by the longer high energy milling. These results show that the high energy milling of the boron precursor powder can improve the reactivity for the formation of $MgB_2$.

  • PDF