• Title/Summary/Keyword: Microstructure and mechanical properties

Search Result 2,018, Processing Time 0.03 seconds

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

Mechanical Properties and Microstructure of AlN/W Composites (AlN/W계 복합재료의 기계적 특성과 미세구조)

  • 윤영훈;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

Effect of thermal aging on the mechanical, intergranular corrosion and corrosion fatigue properties of Z3CN20.09M cast duplex stainless steel

  • Ti, Wenxin;Wu, Huanchun;Xue, Fei;Zhang, Guodong;Peng, Qunjia;Fang, Kewei;Wang, Xitao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2591-2599
    • /
    • 2021
  • The effect of thermal aging at 475 ℃ and 750 ℃ of Z3CN20.09M cast duplex stainless steel (CDSS) on microstructure, mechanical and intergranular corrosion properties were investigated by transmission electron microscope (TEM), nano indenter, scanning electron microscope (SEM) and corrosion fatigue test system. The result indicated that the spinodal decomposition and G precipitated were occurred after aged at 475 ℃, as well as sigma precipitated at 750 ℃. The microstructure degeneration of ferrite was saturated after aged for 2000h and 200 h at 475 ℃ and 750 ℃ respectively. The mechanical properties, intergranular corrosion resistance and corrosion fatigue lives were continuing deteriorated with increasing the aging time at both temperatures. The difference of the degeneration mechanisms of Z3CN20.09M CDSS aged at 475 ℃ and 750 ℃ was analyzed.

Effect of Welding Heat Input and PWHT Cooling Rate on Mechanical Properties of Welded Region at SAW of 1.25Cr-0.5Mo Steel for Pressure Vessel (압력용기용 1.25Cr-0.5Mo 강의 Submerged Arc Welding시 입열 및 PWHT 냉각속도가 용접부 기계적 성질에 미치는 영향)

  • Lee Dong-Hwan;Park Jong-Jin
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.26-31
    • /
    • 2004
  • In order to propose the optimum welding condition for field application, the effects of welding heat input and cooling rate at PWHT on the mechanical properties were investigated. Submerged arc welding of 1.25Cr-0.5Mo steel for pressure vessel was conducted at welding heat inputs of 15.2kJ/cm, 30.9kJ/cm, and 44.8kJ/cm, and cooling rates of 184$^{\circ}C$/hr, 55$^{\circ}C$/hr, and 2$0^{\circ}C$/hr at PWHT. From the test results, as the welding heat input increase up to 30.9kJ/cm, the changes of microstructure and impact toughness were small. At the heat input of 44.8kJ/cm, however, toughness decreased obviously due to the coarsening of coarse-grained HAZ and formation of ferrite at bainite grainboundary of weld metal. On the other hand, cooling rates at PWHT did not effect on the changes in microstructure and mechanical properties. Even though tensile strength and impact toughness at all welding conditions of this study were above the minimum specification requirement, it was confirmed that heat input of 30.9kJ/cm was the optimum welding condition to improve welding performance by higher heat input.

Fabrication and Wear Behavior of Nano-sized Metal Particle Dispersed Al2O3 Nanocomposites (나노크기 금속입자가 분산된 Al2O3 나노복합재료의 제조 및 마모거동)

  • Oh Sung-Tag;Yoon Se-Joong;Jeong Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.503-507
    • /
    • 2005
  • Microstructure and wear behavior of A1203-based nanocomposites with Cu and Ni-Co dispersions were investigated. $Al_2O_3/Cu$ and $Al_2O_3/Ni-Co$ nanocomposites were fabricated by hydrogen reduction and sintering method using metal oxide and metal nitrates. The nanocomposites showed increased mechanical properties compared with monolithic $Al_2O_3$. In particular, high toughness and hardness were measured for the $Al_2O_3/Ni-Co$ nanocomposite consolidated by spark plasma sintering. A minimum value of wear coefficient comparable to the monolithic $Al_2O_3$ was obtained for $Al_2O_3/Ni-Co$ nanocomposite. Wear behavior is discussed in terms of microstructure and mechanical properties of nanocomposites

Isolated Pore Generation Mechanism and Mechanical Properties in MAS System with 3Y-TZP (MAS계에서 3Y-TZP 첨가에 따른 독립 기공 생성기구와 기계적 성질)

  • 최성철;박현철
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.881-890
    • /
    • 1993
  • MAS system has narrow sintering temp. range due to the liquid phae sintering and thereby densify rapidly. And especially, its poor mechanical properties limitedthe industrial application. In this study, the improvement of mechanical properties and densification is suggested by the consideration of the toughening mechanisms and isolated pore generation mechanism which is derived by the liquid phase sintering theory in 3Y-TZP added composites. After Pressureless sintering up to 140$0^{\circ}C$ for 5hr, the dihedral angle and contact angle are analyzed by the observation of microstructure. As a result of microstructure analysis, the sintering stage of the specimen sintered for 5hr is analyzed as solid-skeleton stage. And the isolated pore generation mechanisms are considered as (1) The swelling of the liquid phase is predominent due to the facts that dihedral angle is larger than 60$^{\circ}$, contact angle is large and that liquid volume fraction is smaller than 10%. (2) The porous characteristics of the MAS system is also suggested as: the SiO2-rich liquid film is firstly formed at the srface and therefore this reduces the contiguity of the pore, which induces the isolated pore. The strength and fracture toughness increased with the addition of 3Y-TZP and the main fracture toughness improvement mechanisms are analyzed as the crack deflection.

  • PDF

Microstructures and Mechanical Properties of Al-B4C Composites Fabricated by DED Process (DED 공정으로 제조된 Al-B4C 복합재의 미세조직 및 기계적 특성)

  • Yu-Jeong An;Ju-Yeon Han;Hyunjoo Choi;Se-Eun Shin
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.262-267
    • /
    • 2023
  • Boron carbide (B4C) is highly significant in the production of lightweight protective materials when added to aluminum owing to its exceptional mechanical properties. In this study, a method for fabricating Al-B4C composites using high-energy ball milling and directed energy deposition (DED) is presented. Al-4 wt.% B4C composites were fabricated under 21 different laser conditions to analyze the microstructure and mechanical properties at different values of laser power and scan speeds. The composites fabricated at a laser power of 600 W and the same scan speed exhibited the highest hardness and generated the fewest pores. In contrast, the composites fabricated at a laser power of 1000 W exhibited the lowest hardness and generated a significant number of large pores. This can be explained by the influence of the microstructure on the energy density at different values of laser power.

EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

  • Noh, Sanghoon;Choi, Byoung-Kwon;Han, Chang-Hee;Kang, Suk Hoon;Jang, Jinsung;Jeong, Yong-Hwan;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.821-826
    • /
    • 2013
  • In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

Recent R&D status on friction stir welding of Ti and its alloys (티타늄과 그 합금의 마찰교반용접기술 현황)

  • Kang, Duck-Soo;Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • This article describes the basic technical concepts for applying the friction stir welding (FSW) process to titanium and its alloys. Titanium and its alloys are demanding applications of FSW. During FSW, a protective atmosphere is needed at the welding region to prevent the joints from oxidation due to the absorption of interstitial elements (O, N, and H) at high temperature. The process parameters for FSW have great influence on the microstructure and properties of the joints. No phase transformation occurred in CP Ti because FSW was achieved below the ${\beta}$-transus temperature. Therefore, the mechanical properties of the joints with CP Ti were governed by recrystallization and grain refinement. Furthermore, the strong crystallographic texture indicating <0001>//ND formed in the stir zone. On the other hands, the phase transformation occurred in Ti-6Al-4V alloy because the process temperature reached above ${\beta}$-transus temperature. For this reason, the mechanical properties of the joints with Ti-6Al-4V alloy were altered by not only recry stallization and grain refinement but also phase transformation during FSW. Engineers who want to get sound FSW joints with Ti-6Al-4V alloy have to pay attention to the control about process conditions.

A Study on the Microstructure and Mechanical properties of Fe Aluminide alloys (Fe-Aluminide합금의 미세조직과 기계적 특성에 관한 연구)

  • Jo, Jong-Chun;Lee, Do-In;Lee, Seong-Jae;Choe, Byeong-Hak;Kim, Hak-Min
    • 연구논문집
    • /
    • s.22
    • /
    • pp.115-125
    • /
    • 1992
  • Mechanical properties and microstructure were investigated on vacuum induction melted $Fe_3A1$base alloys of $DO_3$ structure. Specal emphasis were put on the effect of alloy chemistry, grain size and process(rolling, directional solidification) on mechanical properties of Fe-22.5-39at.%Al at elevated temperature between room temperature and $800^{\circ}C$. grain size of as-cast alloys is refined by rolling from 1mm to $80\mum$. Tensile strength of Fe-24.lat.%AI was about 404MPa at the critical ordering temperature, and the fracture strain of the alloy was 1-2% at room temperature. An inverse temperature dependence of the strength is noticed as-cast $Fe_3A1$. The presence of Cr and Zr do not affect the room temperature ductility and high temperature strength. Fracture strain of directionally solidified(DS) $Fe_3A1$ is about 1%at room temperature, but is about 60%at. $T_C$(550^{\circ}C)$. Tensile strength of DS alloy is lower than that of as-cast alloy at $530^{\circ}C$ and $430^{\circ}C$. Failure mode at room temperature varies from transgranular fracture to intergranular fracture with the addition of Al. the failure mode also varies from mixed(transgranular+ intergranular) mode between room temperature and $500^{\circ}C$ to intergranular mode above $550^{\circ}C$

  • PDF