• 제목/요약/키워드: Microstructure and mechanical properties

검색결과 2,018건 처리시간 0.031초

CO-기 합금의 열처리에 의한 미세조직 및 기계적 특성변화에 관한 연구 (The Effect of Heat Treatment on the Microstructural Evolution and Mechanical Properties of Co-base Materials)

  • 김기엽;정병호;안용식
    • 동력기계공학회지
    • /
    • 제5권2호
    • /
    • pp.63-70
    • /
    • 2001
  • To obtain the optimal condition of heat treatment of wear-resistant alloy, hardness and Charpy V-notch test have been performed with Co-based Stellite No.4, No.6 and Tribaloy 800 alloys, following by heat treatment at the various conditions. Heat treatment at $1250^{\circ}C$ for 1 hours caused the as-casted Tribaloy 800 with FCC crystal structure to transform to HCP structure and lamellar eutectic structure was disappeared, which did not influence on the hardness. Aging at $800^{\circ}C$ for 20 hours, following by $1250^{\circ}C$ for 2 hours heat treatment has enhanced hardness significantly, which is due to the precipitation of large amounts of Laves-phase. The hardness of Stellite alloys was increased by the aging at $800^{\circ}C$ to 5 hours, and was nearly constant by the aging over 5 hours. The toughness of Stellite alloys was a few influenced by the aging treatment.

  • PDF

새로운 압연Process 구축을 통한 연화소둔 열처리생략강개발 (Development of Low Annealing treatment omission steel by new rolling process)

  • 김병홍;최규성;허춘열;김경원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.27-36
    • /
    • 2004
  • Contemporary objectives for steel rod rolling processing are increasingly complex and often contrasting i.e. obtaining a desired product with optimum combination of properties such as strength, toughness and formability at lower cost. Low-alloy steel rods have been produced with several heat treatments for drawing and forging processes at room temperature. In order to reduce these heat treatments much of the researches concerning of high temperature mechanical behavior of steel rods have been conducted at wire rod mill of POSCO. In this present work, optimizations of rolling temperature and cooling rate for JS-SCM435 are performed to eliminate softening heat treatment(Low Temperature Annealing) for drawing process. The results from the optimization changed the microstructure of rods after rod rolling from Bainite with high tensile strength of 1000Mpa to Pearlite and Ferrite with appropriate strength of 750Mpa that is equivalent tensile strength after softening heat treatment.

  • PDF

저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가 (Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings)

  • 변경준;김재익;이창희;김시조;이성
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.

3 wt.% Cu 함유 STS 304 빌렛의 열간가공성과 표면결합에 미치는 δ-ferrite의 영향 (Effect of δ-Ferrite on the Hot Workability and Surface Defect of STS 304 Billets Containing 3 wt. % Cu)

  • 김상원
    • 한국재료학회지
    • /
    • 제14권6호
    • /
    • pp.379-388
    • /
    • 2004
  • To investigate the effect of D-ferrite on the hot workability and surface defect of STS 304 billets containing 3 wt. % Cu, microstructure observations and high temperature mechanical properties test were carried out for the specimens extracted mainly from raw or oxidized billets. It was found that the total $\delta$-ferrite content has little influence on the hot workability, even though the fracture cracks due to high temperature tension or compression test were initiated and propagated mostly along $\delta$/${\gamma}$ boundary in the specimens. On the other hand, it was supposed that the direct causes of surface defects in the wire rolled from the as-continuously cast billet were the grain boundary embrittlement arose from the deep diffusion of oxygen into the grain boundary, and the oxidation of $\delta$-ferrite connected by a grain boundary to the surface during the billet reheating process as well.

PTAW법에 의한 Al 합금 표면의 후막경화층 형성에 관한 연구 (A Study on Formation of Thick Hardened Layer on Al Alloy Surface by PYAW Process)

  • 임병수;김봉수;오세훈;황선효;서창제
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.92-103
    • /
    • 1997
  • The purpose of this study is to improve the wear resistance and hardness of Al alloy by making a formation of the thick surface hardening layers. The thick surface hardening layers were formed by PTAW(Plasma Transferred Arc Welding), with the addition of metal powders (Cu), ceramics powders (NbC, TiC), and mixture powders (Cu+NbC) in Al alloy (A1050, A5083). Mechanical properties of overlaid layers (wear resistance, hardness) were investigated in relation to the microstructure. The results obtained are summarized as follows: The depth of penetration was increased with increasing powder feeding rate. It is considered that these increase were due to the thermal pinch effect by the addition of powders, especially, for the Cu powders, were due to the heat of reaction with the matrix. The hardness and wear resistance of overlaid layers were improved with increasing powder feeding rate. For the Cu powders, it is considered that these increase were due to the increase of the formation of ${\theta}(CuAl_2)$ phase with increasing feeding rate of Cu powers.

  • PDF

유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구 (Characteristics of Pt thin films on WC for glass lens molding)

  • 박순섭;이기용;원종호
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

새로운 개념의 분말공급장치를 이용한 Ni기 초합금의 용접성 향상기술 (Improvement of the Weldability of Ni base Superalloy by using a New Powder Supply System)

  • 장성용;김민태;원종범
    • 대한금속재료학회지
    • /
    • 제46권4호
    • /
    • pp.241-248
    • /
    • 2008
  • Gas turbine blades serviced for a period are usually repaired for reuse via "rejuvenation processes" including fluoride ion cleaning, brazing or welding, and recoating. Among these processes, the welding process is applied to rebuilt damaged parts of the blade in which welding materials being mostly Ni base superalloy are supplied in the form of powder or wire. When powder is used in the welding process, the uniform supply of powder is a very important factor for the uniformity of welding. According to our experience, the uniformity was very poor with the powder supply system only utilizing pressurized air flow. A new powder supply system was developed in which powder is supplied via air flow and simultaneously mechanically. The welding uniformity was much improved with this new system. In this study, the microstructure and mechanical properties of welded parts obtained from several kinds of powder using the new powder supply system were characterized.

동 테르밋 용접 특성 향상을 위한 폐 산화동 분말 입도 제어 연구 (Controlling Particle Size of Recycled Copper Oxide Powder for Copper Thermite Welding Characteristics)

  • 이한성;김민수;안병민
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.332-338
    • /
    • 2023
  • Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5-24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.

희토류원소에 의한 박육구상흑연주철품의 조직변화 (Effect of Rare Earth Elements on the Microstructures of Thin-Wall Ductile Iron Castings)

  • 김지영;최준오;박성택;한윤성;최창옥
    • 한국주조공학회지
    • /
    • 제23권4호
    • /
    • pp.187-194
    • /
    • 2003
  • The effect of rare earth elements (R.E)(from 0.0 to 0.04%) on the microstructure formation and mechanical properties of thin-wall ductile iron castings were investigated. Tensile strength and hardness were decreased with an addition of up to 0.03% rare-earth elements. After addition of more than 0.03%, those were increased. Graphite nodule sizes were the finest, nodule count was the highst regardless of thickness and volume fraction of ferrite was the largest when that was 0.02%. However, the nodule count was decreased with increasing R.E. Futhermore. nodule size increased with increasing thickness and the volume fraction of ferrite decreased as that was increased. Nodularity was increased regardless of the thickness as that was increased. The castings of minium thickness up to 3 mm was possible without the formation of chill.

충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가 (Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process)

  • 김우열;안동현;박이주;김형섭
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.