• Title/Summary/Keyword: Microstrip antennas

Search Result 275, Processing Time 0.028 seconds

A Simulation Study of the Inset-fed 2-patch Microstrip Array Antenna for X-band Applications (X-band 대역용 2-패치 마이크로스트립 인셋 급전 어레이 안테나 시뮬레이션 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2024
  • This paper presents a single and 2-patch microstrip array antenna operated on a frequency of 10.3GHz(x-band). It outlines the process of designing a microstrip patch array antenna using CST MWS. Initially, a single microstrip antenna was designed, followed by optimization using CST MWS to attain optimal return losses and gain. Subsequently, the design was expanded to create a 2×1 microstrip inset-fed array antenna for the X-band applications. The construction material is Roger RO4350B, with specific dimensions (h=0.79mm, 𝜖r = 3.54). The achieved results include an S11 of -18dB at the resonant frequency (10.3GHz), a gain of 9.82dBi, a bandwidth of 0.165GHz, and a 3-dB beamwidth of 30°, 121° in Az(𝜑=0) and El(𝜑=90) plane, respectively. The future plan involves the fabrication of this array antenna and further expansion to a 4×4 array of microstrip antennas. It is then incorporated on the X-band applications for practical uses.

Design of Compact Microstrip Patch Antenna for Short Distance WLAN (근거리 WLAN을 위한 광대역 마이크로스트립 패치 안테나 설계)

  • Choi, Yong-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.

Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave (신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Design and Fabrication of Composite Smart Structures for Communication (복합재료를 이용한 통신용 지능구조물 설계 및 제작)

  • You, C.S.;Hwang, W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.346-349
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effect of composites facesheet on antenna performances is studied in the first stage. Changes in the gain of microstrip antenna due to composites facesheet have been determined. 'Open condition' is defined when gain is maximized and is a significant new concept in the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with any thickness of outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved (over 11 dBi) and the bandwidth is also as wide as specified in our requirements (over 10% at 12.2 GHz). With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

Design and Implementation of High Efficiency Slot Antenna for the Metal Notebook Dual Band WiFi MIMO System (메탈 노트북 Dual 밴드 WiFi MIMO용 고효율 슬롯안테나 설계 및 구현)

  • Yoo, Younghyeouk;Lee, Moonhee;Son, Taeho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1338-1343
    • /
    • 2018
  • MIMO(Multiple Input Multiple Output) slot antenna that operates on the dual WiFi band(2.401~2.495GHz, 5.18~5.825GHz), in this paper, was studied. The basic theory for the slot design is based on the coupling between adjacent slot, and slots are fed by the each microstrip lines. Two slot antennas for the MIMO operation are located on the left and the right side of top of the metal notebook, and grounds between a notebook and two microstrip feeding lines are connected. Measurement of return loss showed under -6dB on entire design band, and isolation was below than -30dB. Radiation efficiency, average gain and peak gain for the left and the right slot were measured in the anechoic chamber, and showed good performances as 57.25%, -2.42dBi, 5.64dBi and 55.35%, -2.61dBi, 6.42dBi for the 2.4GHz band and 55.89%, -2.58dBi, 7.3dBi and 53.79%, -2.8dBi, 7.54dBi for the 5GHz band.

Multiband Microstrip-Fed Right Angle Slot Antenna Design for Wireless Communication Systems

  • Rakluea, Paitoon;Anantrasirichai, Noppin;Janchitrapongvej, Kanok;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • This paper presents a novel multiband microstrip-fed right angle slot antenna design technique for multiple independent frequency bands. The new technique uses various slot sizes at various appropriate positions. We first propose a tri-band slot antenna consisting of three right angle slots. Then, a quad-band slot antenna is developed with four right angle slots which achieves slant ${\pm}45^{\circ}$ linear polarization, omnidirectional pattern coverage, good antenna gain, and acceptable impedance bandwidths over all the operating frequency range. Moreover, an open-circuited tuning stub is introduced to achieve good impedance matching. Both proposed antennas are designed on a ground plane of RT/duroid 5880 substrate with a thickness of 1.575 mm. The real measurable results show that the desired frequencies used in wireless communication systems, namely, WLAN and WiMax, are efficiently achieved.

  • PDF

Accurate Design Method for Rectangular Microstrip Patch Antenna (정방형 마이크로스트립 패치 안테나의 정확한 설계 방식)

  • Yook, Jong-Gwan;Lee, Hong-Min;Park, Han-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.13-20
    • /
    • 1989
  • An accurate design method for rectangular microstrip patch antenna that can be applied to wide range of frequencies (C-band to X-band) is proposed. With due regard the frequency dependent effective dielectric permittivity to design formula, the inaccuracy of previous design formulae can be overcome. The results predicted by new procedure are compared well experimental results that had varying operation frequencies between 7GHz and 15GHz. Antennas are fabricated over microwave substrates with the same dielectric permittivity and thickness. Radiation power patterns are also measured and they well with theoretical values.

  • PDF

Design and Analysis of a Dual T type Microstrip Antennas (이중 T자 구조의 마이크로스트립 안테나 설계)

  • Lee Hyeon-Jin;Lim Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.119-123
    • /
    • 2005
  • In this paper. It is proposed and fabricated that the new antenna of dual T type structure is shifted easily center frequency. This antenna consists of dual dipoles resemblance to dual T type, which are fed by a coplanar waveguide (CPW) on signal plane. The analyzed and measured characteristic of new antenna is controled between distance of two dipoles for shifting center frequency. The proposed antenna is 450MHz bandwidth for using IMT2000 band. The characteristic parameters of the proposed antenna are analyzed by using a FDTD methods.

이동통신 단말기용 안테나

  • 김종규
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.2-11
    • /
    • 2001
  • The L-shaped strip is shown to be an attractive feed for the thick mierostrip antenna (thickness around 10% of the operating wavelength). The L-strip incorporated with the radiating patch introduces a capacitance suppressing some of the inductance introduced by the strip itself. In this paper, a wideband microstrip patch antenna fed by L-strip for the PCS ($1,750{\sim}1,850MHz$) and IMT-2000 ($1,920{\sim}2,170MHz$) broad-band is presented. A two-element array fed by L-strip is also proposed. Both the antennas have stable radiation patterns across the passband. The impedance bandwidth is over 31% (VSWR < 1.5, 615 MHz) of the center frequency. Moreover, both the antennas have about 7 dBi average gain.

  • PDF

Folded Loop Antennas for RFID Appilication (RFID 응용을 위한 폴디드-루프 안테나)

  • Choi, Tea-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.4
    • /
    • pp.199-202
    • /
    • 2007
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm, and the size of the tag antenna can be reduced up to kr=0.27(2 cm2). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

  • PDF