• Title/Summary/Keyword: Microscale Characterization

Search Result 14, Processing Time 0.022 seconds

Characterization of Microscale Objects based on the Diffraction Pattern Analysis (회절무늬를 이용한 미세물체의 특성 측정)

  • 강기호;전형욱;손정영;오명환
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1991
  • This paper describes the theoretical analysis of a diffraction pattern analyzer for the characterization of microscale object fields and a method for obtaining size and size distribution from the measured diffraction pattern of the object fields. For the experimental verification, a typical optical Fourier transform system was set up and calibrated with 2 5$\mu \textrm m$ and 50$\mu \textrm m$ pinholes. The system responses to distilled water droplets, alcohol, glycerin and silicon oil were imaged with vidicon, and the image was processed to determine the size distribution of each liquid particle field. The energy distribution function which is defined as the total intensity of a circular ring in the diffraction pattern was used to determine the dominant particle size of each liquid particle field.

  • PDF

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hui-Gwon;Grigoropoulos, Costas-P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1140-1147
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the microscale regime are essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing application, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse(λ=248nm, FWHM=24ns) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of 0.1㎛ and 1m/s, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

Smart geophysical characterization of particulate materials in a laboratory

  • Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.217-233
    • /
    • 2005
  • Elastic and electromagnetic waves can be used to gather important information about particulate materials. To facilitate smart geophysical characterization of particulate materials, their fundamental properties are discussed and experimental procedures are presented for both elastic and electromagnetic waves. The first application is related to the characterization of particulate materials using shear waves, concentrating on changes in effective stress during consolidation, multi-phase phenomena with relation to capillarity, and microscale characteristics of particles. The second application involves electromagnetic waves, focusing on stratigraphy detection in layered soils, estimation of void ratio and its spatial distribution, and conduction in unsaturated soils. Experimental results suggest that shear waves allow studying particle contact phenomena and the evolution of interparticle forces, while electromagnetic waves give insight into the characteristics of the fluid phase and its spatial distribution.

Probing of Microscale Phase-Change Phenomena Based on Michelson Interforometry (Michelson 간섭계를 응용한 미세 상변화 현상 계측)

  • Kim, Dong-Sik;Park, Hee-K.;Grigoropoulos, Costas P.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.348-353
    • /
    • 2001
  • Experimental schemes that enable characterization of phase-change phenomena in the micro scale regime is essential for understanding the phase-change kinetics. Particularly, monitoring rapid vaporization on a submicron length scale is an important yet challenging task in a variety of laser-processing applications, including steam laser cleaning and liquid-assisted material ablation. This paper introduces a novel technique based on Michelson interferometry for probing the liquid-vaporization process on a solid surface heated by a KrF excimer laser pulse (${\lambda}=248nm,\;FWHM=24\;ns$) in water. The effective thickness of a microbubble layer has been measured with nanosecond time resolution. The maximum bubble size and growth rate are estimated to be of the order of $0.1{\mu}m\;and\;1\;m/s$, respectively. The results show that the acoustic enhancement in the laser induced vaporization process is caused by bubble expansion in the initial growth stage, not by bubble collapse. This work demonstrates that the interference method is effective for detecting bubble nucleation and microscale vaporization kinetics.

  • PDF

Electrical Characterization of Electronic Materials Using FIB-assisted Nanomanipulators

  • Roh, Jae-Hong;You, Yil-Hwan;Ahn, Jae-Pyeong;Hwang, Jinha
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.223-227
    • /
    • 2012
  • Focused Ion Beam (FIB) systems have incorporated versatile nanomanipulators with inherent sophisticated machining capability to characterize the electrical properties of highly miniature components of electronic devices. Carbon fibers were chosen as a model system to test the applicability of nanomanipulators to microscale electronic materials, with special emphasis on the direct current current-voltage characterizations in terms of electrode configuration. The presence of contact resistance affects the electrical characterization. This resistance originates from either i) the so-called "spreading resistance" due to the geometrical constriction near the electrode - material interface or ii) resistive surface layers. An appropriate electrode strategy is proposed herein for the use of FIB-based manipulators.

Fabrication and Characterization of a Pressure Sensor using a Pitch-based Carbon Fiber (탄소섬유를 이용한 압력센터 제작 및 특성평가)

  • Park, Chang-Sin;Lee, Dong-Weon;Kang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper reports fabrication and characterization of a pressure sensor using a pitch-based carbon fiber. Pitch-based carbon fibers have been shown to exhibit the piezoresistive effect, in which the electric resistance of the carbon fiber changes under mechanical deformation. The main structure of pressure sensors was built by performing backside etching on a SOI wafer and creating a suspended square membrane on the front side. An AC electric field which causes dielectrophoresis was used for the alignment and deposition of a carbon fiber across the microscale gap between two electrodes on the membrane. The fabricated pressure sensors were tested by applying static pressure to the membrane and measuring the resistance change of the carbon fiber. The resistance change of carbon fibers clearly shows linear response to the applied pressure and the calculated sensitivities of pressure sensors are $0.25{\sim}0.35 and 61.8 ${\Omega}/k{\Omega}{\cdot}bar$ for thicker and thinner membrane, respectively. All these observations demonstrated the possibilities of carbon fiber-based pressure sensors.

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Generation and Characterization of Homogeneous Isotropic Turbulence (균질한 등방향성 난류 생성 및 특성 변화 분석)

  • Lee, HoonSang;Han, KyuHo;Park, Han June;Jung, HyunKyun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Homogeneous and isotropic turbulence (HIT) with no mean flow is a very useful type of flow for basic turbulence research. However, it is difficult to generate HIT in the lab. In this study, we implemented HIT in a confined box through synthetic jet actuators using sub-woofer speakers. Characteristics of HIT are varied depending on the strength of the jets. We used 2D PIV to measure the velocity field. Turbulence statistics such as homogeneity, isotropy ratio, turbulence kinetic energy, dissipation rate, Taylor microscale, Kolmogorov scale, and velocity correlation coefficient were calculated. Most of the turbulence statistics increased exponentially according to the strength of the jets, and the Taylor Reynolds number reached up to 185.

The measurement of nano properties using nanoindentation (나노인덴테이션을 이용한 나노물성 측정)

  • Kwon Dong-Il;Lee Kyung-Woo;Kim Sung-Hoon;Kim Ju-Young;Lee Yun-Hee
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.63-68
    • /
    • 2005
  • The nanoindentation technique is widely used to investigate the mechanical properties of nano-microscale materials. The nanoindentation method for assessing mechanical properties at low loads and shallow depths is already well established fur the characterization of thin films as well as bulk materials. In this study, we evaluated residual stress in DLC and Au thin films usign nanoindentation technique with a new stress-relaxation model. Moreover, We suggest a composite hardness equation and quantify the magnitude of hardness increase by using an equation based on the interface hardness and the interface thickness, derived by comparing results derived from this equation and those determined in nanoindentation tests. Finally, We present an indentation size effect (ISE) model that extends the available contact depth for ISE application down to several tens of nanometers by considering the tip bluntness effect.

  • PDF