• Title/Summary/Keyword: Microporous surface

Search Result 108, Processing Time 0.028 seconds

Structure direct agent-assisted hydrothermal synthesis and small gases adsorption behavior of pure RHO zeolite (구조유도물질 18-crown-6 ether를 이용한 순수한 RHO 제올라이트 수열합성과 작은 가스 흡착 거동)

  • Kim, Beom-Ju;Sharma, Pankaj;Han, Moon-Hee;Cho, Churl-Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.141-149
    • /
    • 2014
  • In the present study, pure RHO zeolite was hydrothermally synthesized by using 18-crown-6 ether as a structure directing agent(SDA), and the small gases adsorption was investigated. Synthesized RHO zeolite was a cube shape particle of which average edge length was around $1.2{\mu}m$ and composed of primary crystallites having a diameter of around 100 to 200 nm. RHO zeolite structure was stable under 3h calcination at $600^{\circ}C$. Water adsorption data announced that RHO zeolite has a specific surface area of 483.32 m2/g and its micropore diameter was about 4 A. Gas adsorption was studied in the pressure range of 50 to 500 kPa for $CO_2$, $N_2$, $O_2$ and $H_2$. It was evident that RHO zeolite showed a strong $CO_2$ adsorption behavior. Especially, RHO zeolite showed a transient $CO_2$ adsorption behavior. The 3h $CO_2$ up-take at 50 kPa and 500 kPa was 1.283 and 3.357 mmol/g, respectively. The $CO_2/H_2$ selectivity was around 16 at 500 kPa. Compared with gas adsorption data for some representative microporous adsorbents, it was certain that RHO zeolite is a beneficial adsorbent for $CO_2/H_2$ separation.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

Identification and Physical Characteristics of the Ancient Charcoals Excavated from Chudong-ri Site, Korea (서천 추동리 문화유적에서 채취된 숯의 수종식별과 물리적 특성)

  • Kim, Myung-Jin;Lee, Jong-Shin;Park, Soon-Bal
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.13-22
    • /
    • 2008
  • The identification of species, hygroscopic property, and ability of ethylene gas absorption of 23 ancient charcoals excavated from wooden coffin burials and roof-tile kilns of Chudong-ri cultural site were investigated. All of the 12 charcoals excavated from wooden coffin burials were broad-leaved trees. Among the total 12 samples, 9 samples were Lepidobalanus and others were Celtis spp.. On the other hand, other 11 charcoals from roof-tile kilns were needle-leaved tree, Pinus spp.(hard pine). The broad-leaved tree charcoals from wooden coffin burials showed a higher moisture absorption capacity than needle-leaved tree charcoals from roof-tile kilns. The ethylene gas absorption was greater in the Lepidobalanus charcoal than that of Celtis spp. and Pinus spp. (hard pine) charcoal. The broad-leaved tree charcoal having high absorption ability of substances was due to a large microporous and specific surface area. Therefore, it was estimated that broad-leaved tree charcoals were filled in order to make favorable condition in tomb. The wood quality of pine is soft and easy to burn because of low specific gravity, as well as high calorific value by resin in wood. We could assume that the pine wood was used as fuel for roof-tile kilns because of easy control of heating and thermal power.

  • PDF

DEVELOPMENT OF MICROPOROUS CALCIUM PHOSPHATE COATED NERVE CONDUIT FOR PERIPHERAL NERVE REPAIR (말초신경 재건을 위한 인회석 박막 코팅 미세공성 신경재생관(nerve conduit)의 개발)

  • Lee, Jong-Ho;Hwang, Soon-Jeong;Choi, Won-Jae;Kim, Soung-Min;Kim, Nam-Yeol;Lee, Eun-Jin;Ahn, Kang-Min;Myung, Hoon;Seo, Byoung-Moo;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Kim, Hyun-Man
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to develop a useful nerve conduit which provides favorable environment for Schwann cell viability and proliferation. Milipore membrane of $0.45{\mu}m$ pore size was selected because it permits nutritional inflow from the outside of the conduit and prevents from invading the fibrotic tissue into the conduit. The membrane was rolled and sealed to form a conduit of 2mm diameter and 20mm length. To improve the axonal regeneration and to render better environment for endogenous and exogenous Schwann cell behaviour, the microgeometry and surface of conduit was modified by coating with thin film of calcium phosphate. Cellular viability within the conduit and attachment to its wall were assessed with MTT assay and SEM study. Milipore filter conduit showed significantly higher rate of Schwann cell attachment and viability than the culture dish. However, the reverse was true in case of fibroblast. Coating with thin film of low crystalline calcium phosphate made more favorable environment for both cells with minimal change of pore size. These findings means the porous calcium phosphate coated milipore nerve conduit can provide much favorable environment for endogenous Schwann cell proliferation and exogenous ones, which are filled within the conduit for the more advanced strategy of peripheral nerve regeneration, with potential of reducing fibrotic tissue production.

Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications (금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점)

  • Kim, Moon Hyeon;Choi, Sang Ok;Choo, Soo Tae
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.370-378
    • /
    • 2013
  • This review has shown the capability of MOFs and ZIFs materials to adsorb $CO_2$ under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of $15{\sim}40^{\circ}C$ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of $CO_2$. The extent of $CO_2$ adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant $CO_2$ uptakes. They possess a $CO_2$ adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive $CO_2$ separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.

Effect of Pore Structure Change on the Adsorption of NOM and THMs in Water Due to the Increase of Reactivation Number of Coal-based Activated Carbon (석탄계 활성탄의 재생 횟수 증가에 따른 세공 구조 변화가 수중의 NOM과 THM 흡착에 미치는 영향)

  • Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.965-972
    • /
    • 2010
  • The objective of this research was to evaluate for the changes of pore structures and adsorption capacities due to the increase the numbers of reactivation. The reactivated GAC had experienced three cycles of water treatment and thermal reactivation. The pore size distributions of virgin and reactivated GACs were very different. The virgin GAC was mostly microporous (< $15\;{\AA}$), with less mesopores ($20{\sim}100\;{\AA}$). The reactivated GACs was mostly mesoporous ($20{\sim}100\;{\AA}$), with less micropores (< $15\;{\AA}$). The specific surface area and total pore volume were reduced as the number of reactivation increased. The maximum adsorption capacity (X/M) of virgin GAC ($964.6\;{\mu}g/g$) for $CHCl_3$ was 2~3 times larger than 1st~3rd reactivated GAC ($255.6{\sim}399.5\;{\mu}g/g$). The maximum adsorption capacity (X/M) of virgin GAC (19.5 mg/g) for DOC (dissolved organic carbon) was equal to that of 1st~3rd reactivated GAC (18.0~18.7 mg/g).

EFFECT OF HYDROGEN PEROXIDE CONCENTRATION ON THE WHITENING AND PHYSICAL PROPERTIES OF HYDROXYAPATITE DISCS (Hydrogen Peroxide 농도와 적용시간이 Hydroxyapatite Discs의 미백과 물리적 성질에 미치는 영향)

  • Yang, Yeon-Mi;Lee, Doo-Cheol;Baik, Byeong-Ju;Kim, Jae-Gon;Shin, Jeong-Geun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • The purpose of this study was to evaluate the effect that various concentration and application time of hydrogen peroxide had on tooth whitening and physical properties. The hydroxyapatite (HA) discs of $12mm({\Phi}){\times}1.2mm(t)$ in dimensions were made by compression $(100kg/cm^2)$ and sintering (at $1350^{\circ}C$ for 2 hours) All specimens were polished sequentially with '240 through '2000 emery paper and one side of each specimen was polished finally with $0.3{\mu}m$ alumina paste. The discs were placed in sterile whole stimulated saliva overnight at $37^{\circ}C$ in order to form an in vitro pellicle layer. Then the discs were rinsed with distilled water and soaked into staining broth at $37^{\circ}C$ for 7 days. These stained specimens were bleached with hydrogen peroxide according to the change of concentration $(3{\sim}30%)$ and application time ($3{\sim}10$ days). The specimens were analyzed with a spectrophotometer, X-ray diffractometer (XRD), scanning electron microscope (SEM), surface roughness tester, microhardness tester and biaxial flexural strength. The results of present study can be summarized as follows : 1. The bleaching effect was increased with the increased concentration and the extended application time of hydrogen peroxide. 2. The surface roughness was significantly increased from the specimen bleached with 15% hydrogen peroxide for 10 days and with 30% for 7 and 10 days respectively (p<0.05). 3. The changes of crystal phase observed by XRD between before and after bleaching weren't shown of any difference, but microporous structure of surface observed by SEM was shown of increase with the increased concentration and the extended application. 4. The biaxial flexural strength was significantly decreased from bleaching of specimen with 30% hydrogen peroxide for 7 and 10 days respectively (p<0.05) 5. Microhardness was significantly decreased from bleaching with 15% hydrogen peroxide for 10 days and with 30% for 3, 7 and 10 days respectively (p<0.05). Although the tooth bleaching effect was greater when the high concentration was applied, further in vivo experiment will be needed to prove it's safety.

  • PDF

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.