Effect of Pore Structure Change on the Adsorption of NOM and THMs in Water Due to the Increase of Reactivation Number of Coal-based Activated Carbon

석탄계 활성탄의 재생 횟수 증가에 따른 세공 구조 변화가 수중의 NOM과 THM 흡착에 미치는 영향

  • 손희종 (부산광역시 상수도사업본부) ;
  • 류동춘 (부산광역시 상수도사업본부) ;
  • 장성호 (부산대학교 지역환경시스템공학과)
  • Received : 2010.08.26
  • Accepted : 2010.10.29
  • Published : 2010.10.31

Abstract

The objective of this research was to evaluate for the changes of pore structures and adsorption capacities due to the increase the numbers of reactivation. The reactivated GAC had experienced three cycles of water treatment and thermal reactivation. The pore size distributions of virgin and reactivated GACs were very different. The virgin GAC was mostly microporous (< $15\;{\AA}$), with less mesopores ($20{\sim}100\;{\AA}$). The reactivated GACs was mostly mesoporous ($20{\sim}100\;{\AA}$), with less micropores (< $15\;{\AA}$). The specific surface area and total pore volume were reduced as the number of reactivation increased. The maximum adsorption capacity (X/M) of virgin GAC ($964.6\;{\mu}g/g$) for $CHCl_3$ was 2~3 times larger than 1st~3rd reactivated GAC ($255.6{\sim}399.5\;{\mu}g/g$). The maximum adsorption capacity (X/M) of virgin GAC (19.5 mg/g) for DOC (dissolved organic carbon) was equal to that of 1st~3rd reactivated GAC (18.0~18.7 mg/g).

본 연구에서는 석탄계 활성탄 신탄과 재생탄들을 이용하여 재생 횟수의 증가가 이들의 세공 구조 변화 및 수중의 유기성 오염물질들의 흡착 특성에 미치는 영향에 대해 살펴본 결과, 신탄과 비교하여 1~3차 재생탄들에서 재생회수의 증가에 의해 $15\;{\AA}$ 이하의 미세세공은 감소한 반면 $20{\sim}100\;{\AA}$ 정도의 중간세공은 증가하였다. 재생횟수의 증가할수록 비표면적과 세공용적의 감소가 나타났으며, 세공용적의 감소폭은 신탄에 비해 크지 않았다. 신탄과 1~3차 재생탄들에서의 $CHCl_3$와 DOC에 대한 최대 흡착능(X/M)은 신탄의 경우 $964.6\;{\mu}g/g$ 및 19.5 mg/g인데 반해, 1~3차 재생탄들에는 $255.6{\sim}399.5\;{\mu}g/g$과 18.0~18.7 mg/g이였으며, 1차~3차 재생탄들의 THM 구성종들에 대한 흡착능은 신탄 보다 2~3배 정도 감소하였으나, DOC에 대한 흡착능은 신탄과 거의 동일하였다.

Keywords

References

  1. 나영신, 류동춘, 김상구, 배은영, 송미정, 손희종, 이상준, "생물활성탄 공정에서 신탄과 재생탄의 수처리 특성," 대한환경공학회지, 23(6), 1001-1012(2001).
  2. 손희종, 유수전, 노재순, 유평종, "정수처리에서의 생물활성탄 공정," 대한환경공학회지, 31(4), 308-323(2009).
  3. Cannon, F. S., Snoeyink, V. L., Lee, R. G., Dagois, G. and DeWolfe, J. R., "Effect of calcium in field-spent GACs on pore development during regeneration," J. Am. Water Works Assoc., 85(3), 76-89(1993).
  4. Cannon, F. S., Snoeyink, V. L., Lee, R. G. and Dagois, G., "Reaction mechanism of calcium-catalyzed thermal regeneration of spent granular activated carbon," Carbon, 32(7), 1285-1301(1994). https://doi.org/10.1016/0008-6223(94)90114-7
  5. Snoeyink, V. L., "Adsorption of organic compounds," In Water Quality and Treatment, Pontius, F. W., Ed., McGraw- Hill, New York, pp. 781-875(1990).
  6. Rodriguez-Reinoso, F., "Activated carbon: structure, characterization, preparation and applications," In Introduction to Carbon Technologies, Marsh, H., Heintz, E. A. and Rodríguez- Reinoso, F., Eds., University of Alicante, Alicante, pp. 35-101(1997).
  7. Karanfil, T., Kilduff, J. E., Kitis, M. and Wigton, A., "Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. natural organic matter," Environ. Sci. Technol., 33, 3225-3233(1999). https://doi.org/10.1021/es9810179
  8. Moore, B. C., Cannon, F. S., Westrick, J. A., Metz, D. H., Shrive, C. A., DeMarco, J. and Hartman, D. J., "Changes in GAC pore structure during full-scale water treatment at Cincinnati: a comparison between virgin and thermally reactivated GAC," Carbon, 39, 789-807(2001). https://doi.org/10.1016/S0008-6223(00)00097-X
  9. Hutchins, R. A., "Economic factors in granular carbon thermal regeneration," Chem. Eng. Prog., 69(11), 48-55(1973).
  10. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol. J. and Siemieniewska, T., "Reporting physisorption data for gas/solid systems," Pure Appl. Chem., 57(4), 603-619(1985). https://doi.org/10.1351/pac198557040603
  11. Knappe, D. R. U., Snoeyink, V. L., Dagois, G. and Dewolfe, J. R., "Effect of calcium on thermal regeneration of GAC," J. Am. Water Works Assoc., 84(8), 73-80(1992).
  12. Ebie, K., Li, F., Azuma, Y., Yuasa, A. and Hagishita, T., "Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water," Water Res., 35(1), 167-179(2001). https://doi.org/10.1016/S0043-1354(00)00257-8
  13. 손희종, 노재순, 김상구, 배석문, 강임석, "활성탄 공정에서의 염소 소독부산물 제거특성," 대한환경공학회지, 27(7), 762-770(2005).
  14. Dabrowski, P., Podkoscielny, P., Hubicki, Z. and Barczak, M., "Adsorption of phenolic compounds by activated carbon-a critical review," Chemosphere, 58, 1049-1070(2005). https://doi.org/10.1016/j.chemosphere.2004.09.067
  15. Ogino, K., Kaneko, Y., Minoura, T., Agui, W. and Abe, M., "Removal of humic substances dissolved in water I," J. Colloid Interface Sci., 121(1), 161-169(1988). https://doi.org/10.1016/0021-9797(88)90419-5
  16. Newcombe, G., Drikas, M. and Hayes, R., "Influence of characterized natural organic material on activated carbon adsorption: II. effect on pore volume distribution and adsorption of 2-methylisoborneol," Water Res., 31(5), 1065-1073(1997). https://doi.org/10.1016/S0043-1354(96)00325-9
  17. Thurman, E. M., Wershaw, R. L., Malcolm, R. L. and Pinckney, D. J., "Molecular size of aquatic humic substances," Org. Geochem., 4, 27-35(1982). https://doi.org/10.1016/0146-6380(82)90005-5
  18. Aiken, G. R., "Evaluation of ultrafiltration for determining molecular weight of fulvic acid," Environ. Sci. Technol., 18(12), 978-981(1984). https://doi.org/10.1021/es00130a016
  19. Newcombe, G., Hayes, R. and Drikas, M., "Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics," Colloids Surf. A: Physiochem. Eng. Aspects, 78, 65-71(1993). https://doi.org/10.1016/0927-7757(93)80311-2
  20. Koffskey, W. E. and Lykins Jr, B. W., "GAC adsorption and infrared reactivation: a case study," J. Am. Water Works Assoc., 82(1), 48-56(1990).
  21. Cairo, P. R., Coyle, J. T., Davis, J. J., Neukrug, H. M., Suffet, I. H. and Wicklund, A., "Evaluating regenerated activated carbon through laboratory and pilot-column studies," J. Am. Water Works Assoc., 74(2), 94-102(1982).
  22. Varma, M. M., Parsuram, R. and Stumm, T. A., "THM precursor removal efficiency of regenerated and virgin carbon," J. Environ. Syst., 13(3), 231-244(1984).
  23. Snoeyink, V. L., "Adsorption of organic compounds," In Water Quality and Treatment: a Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw- Hill Inc., New York, pp. 781-855(1990).
  24. Choi, K. J., Kim, S. G., Kim, C. W. and Kim, S. H., "Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A," Chemosphere, 58(11), 1535-1545(2005). https://doi.org/10.1016/j.chemosphere.2004.11.080