• Title/Summary/Keyword: Microphthalmia-associated Transcription Factor(MITF)

Search Result 112, Processing Time 0.03 seconds

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

Antioxidative Activities and Whitening Effects of Ethyl Acetate Fractions from The Immature Seeds of Abeliophyllum distichum (미선나무 미성숙 종자의 항산화 및 미백 활성)

  • Jang, Tae Won;Park, Jae Ho
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.536-544
    • /
    • 2017
  • Abeliophyllum distichum Nakai is deciduous shrubs of flowering plant in Oleaceae. It is important plant resources and consists of one species in the world. Also the endemic plant of A. distichum has been protected and designed endangered plant in Korea. For this reason, study on the immature seeds of A. distichum (ADS) hasn't progressed. In the present study, we evaluated the antioxidant activity and inhibitory effects on proteins and mRNA levels were related in the whitening effect in B16F10 cells. ADS was effective for reaction oxygen species (ROS). ROS causes various diseases such as aging, inflammation, cancer, and etc. Antioxidant properties were evaluated DPPH, ABTS radical scavenging activity and Reducing power. Plants were known that contained phenolic compounds were related in antioxidant activity. Phenolic compounds were phytochemicals commonly named natural polyphenols. These are secondary metabolites of plants involved in the defense against different types of stresses. In results, ADS suppressed the expression and transcription of Tyrosinase, TRP-1, TRP-2, and Microphthalmia-associated transcription factor (MITF). Tyrosinase, tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 1 (TRP-2) are known to play an important role in melanin biosynthesis. MITF regulated the expression and transcription of Tyrosinase, TRP-1, and TRP-2. In conclusion, ADS was effective in both antioxidant activities and whitening effects. Also, they were associated with the content of phenolic compounds. We suggested that ADS can be use antioxidants and skin-whitening functional cosmetics material derived from natural plant resources.

Lipoteichoic Acid Isolated from Lactobacillus plantarum Inhibits Melanogenesis in B16F10 Mouse Melanoma Cells

  • Kim, Hye Rim;Kim, Hangeun;Jung, Bong Jun;You, Ga Eun;Jang, Soojin;Chung, Dae Kyun
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2015
  • Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia- associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.

Antioxidant Effect of Nelumbo nucifera G. Leaf Extract and Inhibition of MITF, TRP-1, TRP-2, and Tyrosinase Expression in a B16F10 Melanoma Cell Line (연잎 추출물의 항산화 활성 및 멜라노마 세포(B16F10)에서 MITF, TRP-1, TRP-2, tyrosinase의 발현 저해 효과)

  • Yoo, Dan-Hee;Joo, Da-Hye;Lee, Soo-Yeon;Lee, Jin-Young
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1115-1123
    • /
    • 2015
  • The purpose of this study was to investigate the potential of Nelumbo nucifera G. leaf (NNL) extract as a cosmetic additive. The electron-donating ability of the NNL extract at a concentration of 1,000 μg/ml was 67.83%. In xanthine oxidase, the inhibition effect of the NNL extract was 92.7% at the same concentration. For whitening effects, tyrosinase inhibition effect of NNL extract was 42.7% at a 1,000 μg/ml concentration. The cell toxicity of the NNL extract was examined in melanoma cells (B16F10) using a 3-[4, 5–dimethyl–thiazol–2–yl]-2, 5-diphenyl-tetrazoliumbromide (MTT) assay. The cell toxicity assay revealed that the NNL extract had a toxicity of 81.61% at a concentration of 1,000 μg/ml The microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2), and tyrosinase protein expression inhibitory effect by Western blot of NNL extract were measured by a Western blot at concentrations of 25, 50, and 100 μg/ml. At a 100 μg/ml concentration of the NNL extract, the expression of the MITF, TRP-1, TRP-2, and tyrosinase protein was decreased by 69.59%, 27.74%, 67.33%, and 67.78% respectively. The MITF, TRP-1, TRP-2 and tyrosinase mRNA expression inhibitory effect were measured by reverse transcription- polymerase chain reaction (PCR) at concentrations of 25, 50, and 100 μg/ml. GAPDH was used as a positive control. At a concentration of 100 μg/ml of the NNL extract, the expression of MITF, TRP-1, TRP-2, and tyrosinase mRNA was decreased by 67.51%, 71.36%, 85.74%, and 83.64%, respectively. These findings suggest that the NNL extract has antioxidant and whitening effects and that it has great potential as a cosmetic ingredient.

Anti-melanogenic property of ginsenoside Rf from Panax ginseng via inhibition of CREB/MITF pathway in melanocytes and ex vivo human skin

  • Lee, Ha-Ri;Jung, Joon Min;Seo, Ji-Yeon;Chang, Sung Eun;Song, Youngsup
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.555-564
    • /
    • 2021
  • Background: Ginsenosides of Panax ginseng are used to enhance skin health and beauty. The present study aimed to investigate the potential use of ginsenoside Rf (Rf) from Panax ginseng as a new anti-pigmentation agent. Methods: The anti-melanogenic effects of Rf were explored. The transcriptional activity of the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the expression levels of tyrosinase, microphthalmia-associated transcription factor (MITF), and tyrosinase-related proteins (Tyrps) were evaluated in melanocytes and UV-irradiated ex vivo human skin. Results: Rf significantly inhibited Forskolin (FSK) or UV-stimulated melanogenesis. Consistently, cellular tyrosinase activity and levels of MITF, tyrosinase, and Tyrps were downregulated. Furthermore, Rf suppressed MITF promoter activity, which was stimulated by FSK or CREB-regulated transcription coactivator 3 (CRTC3) overexpression. Increased CREB phosphorylation and protein kinase A (PKA) activity induced by FSK were also mitigated in the presence of Rf. Conclusion: Rf can be used as a reliable anti-pigmentation agent, which has a scientifically confirmed and reproducible action mechanism, via inhibition of CREB/MITF pathway.

Inhibitory Effects on Melanin Production of Demethylsuberosin Isolated from Angelica gigas Nakai (참당귀로부터 분리한 Demethylsuberosin의 멜라닌 생성 억제 효과)

  • Kim, You Ah;Park, Sung Ha;Kim, Bo Yun;Kim, A Hyun;Park, Byoung Jun;Kim, Jin Jun
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.209-213
    • /
    • 2014
  • The anti-melanogenic substance was isolated from the root of Angelica gigas Nakai by silica gel column chromatography, preparative HPLC and TLC. As a result of the structure analysis by mass, $^1H$-NMR, and $^{13}C$-NMR spectrometry, the compound was identified as demethylsuberosin. Demethylsuberosin reduced melanin contents of B16F1 melanoma cells in a dose-dependent manner and decreased to about 74% at a concentration $5{\mu}g/ml$. Demethylsuberosin inhibited the expression in microphthalmia associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1), and tyrosinase related protein-2 (TRP-2) in melanocytes. These results suggest that the whitening activity of demethylsuberosin may be due to the inhibition of the melanin synthesis by down-regulation of MITF, tyrosinase, TRP-1 and TRP-2 expression. Thus, our results provide evidence that demethylsuberosin might be useful as a potential skin-whitening agent.

Development of Anti-Melanogenic Agent for Skin Whitening

  • Ahn, Soo-Mi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.129-139
    • /
    • 2007
  • Many modalities of treatment for acquired skin hyperpigmentation are available including chemical agents or physical therapies, but none are completely satisfactory. The ideal depigmenting compound should have a potent. rapid and selective bleaching effect on hyperactivated melanocytes, carry no short- or long-term side-effects and lead to a permanent removal of undesired pigment. acting at one or more steps of the pigmentation process. Depigmentation can be achieved by regulating (i) the transcription and activity of tyrosinase, tyrosinase related protein-1 (TRP-1), tyrosinase related protein-2 (TRP-2), and/or peroxidase; (ii) the uptake and distribution of melanosomes in recipient keratinocytes and (iii) melanin and melanosome degradation and turnover of pigmented keratinocytes. One of the interesting point for development of skin whitening agent is Mitf(Microphthalmia-associated transcription factor). Mitf belongs to the basic helix-loop-helix-zip family of trabscription factors and it is crucial as it regulates both melanocyte proliferation as well as melanogenesis and is the major regulator of tyrosinase and the related enzymes (TRPs), as well as many melanosome structural proteins such as pMel17. Recently, we developed MITF-down-regulating agents from natural and synthetic sources, which have anti-melanogenic effect on in vitro and in vivo. We suggested that potent MITF-down regulating agents might be used for skin whitening cosmeceuticals.

  • PDF

Flavokawain B and C, Isolated from the Root of Piper methysticum, Inhibit Melanogenesis in Melan-a Cells (Piper methysticum 의 뿌리로부터 추출한 Flavokawain B와 C가 Melan-a 세포에서 멜라닌 합성에 미치는 영향)

  • Ryu, Jong Hyuk;Lee, Jeong Ah;Ko, Jae Young;Hwang, Jae Sung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.11-24
    • /
    • 2022
  • It has been reported that the ethanolic extract of the root of Piper methysticum (P. methysticum) inhibits melanogenesis in melanocyte stimulating hormone (MSH)-activated B16 melanoma cells. Flavokawain B (FKB) and Flavokawain C (FKC) isolated from this extract have been found to inhibit melanin production based on anti-melanogenesis activity. This study was designed to find out the inhibition and its process of FKB and FKC on melanin synthesis in melan-a melanocytes. FKB and FKC inhibited melanogenesis at 10 μM, 5 μM respectively in melan-a melanocytes. However, they did not inhibit extracellular tyrosinase activity from melan-a melanocytes. FKB reduced the protein level of tyrosinase (Tyr), tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 2 (TRP-2), microphthalmia-associated transcription factor (MITF) and the mRNA level of Tyr and TRP-1. FKC reduced the protein level of TRP-2 and MITF and the mRNA level of TRP-1 and Tyr. The reduced expression of Tyr and TRP-1 might be resulted from the decreased MITF which regulates major melanogenic proteins. However, since the mRNA expression of MITF did not change by FKB and FKC treatment, the effects of FKB and FKC on extracellular signal regulating kinase (ERK)/AKT phosphorylation, known to regulate the degradation of MITF, were confirmed. FKB and FKC significantly increased the phosphorylation of ERK1/2, not in AKT. These results suggest that FKB and FKC may be helpful as a potential depigmenting agent for various hyper-pigmentary disorders.

Recent Natural Products Involved in the Positive Modulation of Melanogenesis (Melanogenesis 양성적 조절 에 관여하는 최근 천연물의 동향)

  • Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.745-752
    • /
    • 2018
  • Melanogenesis is involved in the pigmentation of the hair, eyes, and skin in living organisms. Various signaling pathways stimulated by ${\alpha}-MSH$, SCF/c-Kit, $Wnt/{\beta}-catenin$, nitric oxide and ultraviolet activate melanocyte, leading to melanin production by tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 expressed via the microphthalmia-associated transcription factor (MITF). However, the abnormal regulation of melanogenesis causes dermatological issues such as graying hair and vitiligo. Therefore, the activators that promote melanogenesis are crucial for the prevention of graying hair and the treatment of hypopigmentary disorders. Many melanogenesis stimulators have been studied for the development of novel drugs derived from synthesized compounds and natural products. Here, in addition to providing a description of a common signaling pathway in the melanogenesis of graying hair and the vitiligo process for the development of novel anti-hair graying agents, this article reviews natural herbs and the active ingredients that promote melanin synthesis as a pharmaceutical agent for the treatment of vitiligo. In particular, compounds such as Imatinib and Sugen with a stimulating effect on melanogenesis as a side effect of the drugs, are also introduced. Recent advances in research on natural plant extracts such as Polygonum multiflorum, Rhynchosia Nulubilis, Black oryzasativa, and Orysa sartiva, widely known as traditional and medicinal extracts, are also reviewed.