• 제목/요약/키워드: Microphthalmia associated transcription factor

검색결과 127건 처리시간 0.027초

Sarsasapogenin Increases Melanin Synthesis via Induction of Tyrosinase and Microphthalmia-Associated Transcription Factor Expression in Melan-a Cells

  • Moon, Eun-Jung;Kim, Ae-Jung;Kim, Sun-Yeou
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.340-345
    • /
    • 2012
  • Sarsasapogenin (SAR) is a steroidal sapogenin that is used as starting material for the industrial synthesis of steroids. It has various pharmacological benefits, such as antitumor and antidepressant activities. Since its effect on melanin biosynthesis has not been reported, we used murine melanocyte melan-a cells to investigate whether SAR influences melanogenesis. In this study, SAR significantly increased the melanin content of the melan-a cells from 1 to 10 ${\mu}M$. Based on an enzymatic activity assay using melan-a cell lysate, SAR had no effect on tyrosinase and DOPAchrome tautomerase activities. It also did not affect the protein expression of tyrosinase-related protein 1 and DOPAchrome tautomerase. However, protein levels of tyrosinase and microphthalmia-associated transcription factor were strongly stimulated by treatment with SAR. Therefore, our reports suggest that SAR treatment may induce melanogenesis through the stimulation of tyrosinase and microphthalmia-associated transcription factor expression in melan-a cells.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • 제44권5호
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Whitening effect of novel peptide mixture by regulating melanosome biogenesis, transfer and degradation

  • Lee, Eung-Ji;Kim, Jandi;Jeong, Min Kyeong;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.15-26
    • /
    • 2021
  • Peptides are short chain of amino acids linked by peptide bonds. They are widely used as effective and biocompatible active ingredients in cosmetic industry. In this study, we developed novel peptide mixture and identified its anti-pigmentation effect on melanocytes and keratinocytes. Our results revealed that peptide mixture inhibited melanosome biogenesis through the regulation of microphthalmia-associated transcription factor, a key factor of melanogenesis in melanocytes. And we observed that peptide mixture inhibited melanosome uptake through the reduction of protease-activated receptor 2, a phagocytosis-related receptor in keratinocytes. Furthermore, peptide mixture activated autophagy system resulting in degradation of transferred melanosomes in keratinocytes. The anti-pigmentation effect of multi-targeting peptide mixture was assessed in a human skin equivalent model (MelanoDerm). Melanin contents in epidermal layer were significantly decreased by topical treatment of peptide mixture, suggesting that it can be applied as a novel cosmetics material having a whitening function.

멜라노마 세포에서 당귀추출물의 MITF, TRP-1, TRP-2, tyrosinase mRNA 발현 억제 효과 (Inhibitory Efficacy of Angelica gigas Nakai on Microphthalmia-associated Transcription Factor (MITF), Tyrosinase Related Protein-1 (TRP-1), Tyrosinase Related Protein-2 (TRP-2), and Tyrosinase mRNA Expression in Melanoma Cells (B16F10))

  • 이수연;이진영
    • 생명과학회지
    • /
    • 제23권11호
    • /
    • pp.1336-1341
    • /
    • 2013
  • 아시아에서 한방약초로 널리 알려진 당귀 추출물의 미백활성을 알아보기 위하여 tyrosinase 저해활성을 측정한 결과 1,000 ${\mu}g/ml$의 농도에서 70% 이상의 활성을 나타내었다. 또한 당귀 추출물에 대한 멜라노마 세포(B16F10)의 세포생존율을 확인한 결과 500 ${\mu}g/ml$의 농도에서 99% 이상의 세포생존율을 확인할 수 있었다. 미백 관련 인자인 MITF, TRP-1, TRP-2 및 tyrosinase의 mRNA 발현량을 측정한 결과 50 ${\mu}g/ml$의 농도에서 각각 85.7%, 123.9%, 68.8%, 208%로 당귀 추출물을 처리하지 않은 군보다 감소하였음을 확인할 수 있었다. 이러한 연구 결과에 따라 당귀 추출물이 melanin 합성과 관련이 있는 유전자 발현의 억제효과가 있음을 확인할 수 있었으며, 미백 화장품 소재로서의 가능성을 확인하였다.

The inhibitory effect of egg white lysosome extract (LOE) on melanogenesis through ERK and MITF regulation

  • Park, Jung Eun;Hwang, Hyung Seo
    • Journal of Applied Biological Chemistry
    • /
    • 제65권2호
    • /
    • pp.93-99
    • /
    • 2022
  • Lysosome organelle extract (LOE) was derived from egg whites. The lysosome is an intracellular organelle that contains several hydrolysis enzymes. Previous studies have reported that LOE performs important functions, such as melanin de-colorization and anti-melanin production in B16F10 melanoma cells. However, its principal molecular and cellular mechanisms have not been elucidated till date. In non-cytotoxic conditions, LOE significantly inhibited α-MSH induced melanin synthesis of murine B16F10 cells. The anti-melanogenic activity of LOE was mediated by suppressing the mRNA expression of tyrosinase enzyme, tyrosinase related protein-1/2 (TRP-1/2), and microphthalmia-associated transcription factor (MITF) genes. By performing western blot analysis, we found that LOE significantly attenuated melanogenesis. In this case, LOE helped in increasing extracellular receptor kinase (ERK) phosphorylation in α-MSH induced B16F10 cells. Furthermore, MITF is found to be a key regulatory transcription factor in melanin synthesis; it was down-regulated by LOE through ERK phosphorylation. In this experiment, PD98059 (MEK inhibitor) was used to check whether LOE directly regulated the activity of ERK. Although LOE exerted inhibitory effect on melanin synthesis, we could not observe this effect in PD98059-treated α-MSH induced B16F10. These results strongly indicate that LOE is related to ERK activation and MITF degradation in anti-skin pigmentation. Hence, LOE should be utilized as a whitening agent of skin in the near future.

Inhibitory Effect of Prunus persica Flesh Extract (PPFE) on Melanogenesis through the Microphthalmia-associated Transcription Factor (MITF)-mediated Pathway

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • 제17권1호
    • /
    • pp.26-32
    • /
    • 2011
  • Novel tyrosinase inhibitors are important for pigmentation in the skin. Following extraction of tyrosinase inhibitors from edible vegetables or fruits, we found that the Prunus persica flesh extract (PPFE) exhibited potential inhibitory activity for melanogenesis. PPFE showed tyrosinase inhibitory activity in an enzymatic assay and PPFE also significantly inhibited the melanin formation in cultured mouse melan-a cells. Moreover, real-time RT-PCR analysis revealed that the inhibition of melanin production by PPFE was closely related to marked suppression of mRNA expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2) in melan-a cells. Further investigation found that the modulation of tyrosinase expression by PPFE was associated with the transcriptional regulation of the microphthalmia-associated transcription factor (MITF). PPFE inhibited the promoter activity of MITF and suppressed MITF mRNA expression in melan-a cells. These results indicate that PPFE down-regulates melanogenesis-associated gene expression through MITF-mediated transcriptional regulation and these events might be related to the hypopigmentary effects of PPFE.

α-MSH 유도성 멜라닌 합성에 있어서 황금 추출물의 역할과 작용기전 연구 (Scutellaria baicalensis Georgi(SBG) inhibits Melanin Synthesis in Mouse B16 Melanoma Cells)

  • 홍성진;김경준
    • 한방안이비인후피부과학회지
    • /
    • 제22권2호
    • /
    • pp.104-117
    • /
    • 2009
  • Objective : Melanin is one of the most important facor in skin color. Melanin protects human skin from ultraviolet radiation otherwise it causes melanin pigmentation. So this experiment is carried out for test whether Scutellaria baicalensis Georgi(SBG) inhibits melanin synthesis and tyrosinase activity in mouse B16 melanoma cells. Method : The melanin synthesis inhibition effects of SBG were examined by in vitro melanin production assay. We assessed inhibitory effects of SBG on melanin contents from B16F1 melanoma cell, on tyrosinase activity(cell and cell free system), effect of SBG on the expression tyrosinase, Microphthalmia-associated Transcription Factor(MITF), Extracellular signal-regulated Kinase(ERK). Result : SBG inhibited melanin synthesis induced $\alpha$-MSH($\alpha$-Melanin Stimulating Hormone) in B16F1. SBG inhibited tyrosinase activity and expression. And SBG down-regulates MITF and stimulated ERK activation in B16F1. Conclusion : According to above results, SBG was improved its suppression effect to the inhibition of melanin synthesis, tyrosinase activation, and tyrosinase promotor activation. So SBG is considered to be used for an strong source of skin whitening effect.

  • PDF

거품돌산호 추출물의 멜라닌 합성 억제 효능 (Inhibitory Effects of Alveopora japonica Extract on Melanin Synthesis)

  • 심중현
    • 생약학회지
    • /
    • 제52권3호
    • /
    • pp.143-148
    • /
    • 2021
  • This study was performed to elucidate the inhibitory effects of Alveopora japonica extract on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of A. japonica extract on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR show that A. japonica extract decrease the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that A. japonica extract decrease melanin production in B16F10 cells. These results demonstrate the whitening effects of A. japonica extract on B16F10 cells; thus, A. japonica extract is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of A. japonica extract. Such research will benefit not only cosmetics, but also the health food and medical industries.

B16F10 세포에서 Anthricin의 미백 효능 (Whitening Effects of Anthricin on B16F10 Cells)

  • 심중현
    • 생약학회지
    • /
    • 제52권1호
    • /
    • pp.13-18
    • /
    • 2021
  • This study was performed to clarify the whitening effects of anthricin on the B16F10 cell line. In order to elucidate the whitening effects of anthricin on the B16F10 cell line, cell viability, messenger ribonucleic acid (mRNA) expressions, tyrosinase activity assay, and melanin production assay were measured. The effects of anthricin on tyrosinase-related protein 1(TYRP1)/TYRP2/tyrosinase (TYR)/microphthalmia-associated transcription factor (MITF) mRNA expressions and melanin content were determined. Quantitative real-time RT-PCR showed that anthricin decreased the mRNA expression level of TYRP1/TYRP2/TYR/MITF genes and melanin production contents than α-MSH-treated B16F10 cells. The tyrosinase activity assay revealed that anthricin decreased the melanin production on the B16F10 cells. These data show that anthricin increases the whitening effects on the B16F10 cells; thus, anthricin is a potent ingredient for skin whitening. Thus, further research on the mechanism of action of anthricin for the development of not only cosmetics, but also healthy food and medicine should be investigated.