• Title/Summary/Keyword: Micromirror array

Search Result 24, Processing Time 0.03 seconds

A Study on the Fabrication and Characterization of Micromirrors Supported by S-shape Girders (S자형 들보에 의해 지지되는 micromirror의 제작 및 동작특성 분석)

  • Kim, Jong-Guk;Kim, Ho-Seong;Sin, Hyeong-Jae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.11
    • /
    • pp.748-754
    • /
    • 1999
  • Micromirrors supported by S-shape girders were fabricated and their angular deflections were measured using a laser-based system. A micromirror consists of a $50\mum\times50\mum$ aluminum plate, posts and an S-shape girder. Two electrodes were deposited on two corners of the substrate beneath the mirror plate. $50\times50$micromirror array were fabricated using the Al-MEMS process. The electrostatic force caused by the voltage difference between the mirror plate and one of the electrodes causes the mirror plate to tilt until the girder touches the substrate. Bial voltage of the mirror plate is between 25~35V and signal pulse voltage on both electrodes is $\pm5V$. A laser-based system capable of real-time two-dimensional angular deflection measurement of the micromirror was developed. The operation of the system is based on measuring the displacement of a HeNe laser beam reflecting off the micromirror. The resonant frequency of the micromirror is 50kHz when the girder touches the substrate and it is 25 when the micromirror goes back to flat position, since the moving mass is about twice of the former case. The measurement results also revealed that the micromirror slants to the other direction even after the girder touches the substrate.

  • PDF

Effects of Form Errors of a Micromirror Surface on the Optical System of the TMATM(Thin-film Micromirror ArrayTM) Projector

  • Jo, Yong-Shik;Kim, Byoung-Chang;Kim, Seung-Woo;Hwang, Kyu-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 2000
  • The projectors using liquid crystal display(LCD) have faults such as low optical efficiency, low brightness and even heat generation. To solve these problems reflective-type spatial light modulators based on MEMS (Microelectromechanical Systems) technology have emerged. Digital Micromirror DeviceTM(DMDTM), which was already developed by Texas Instruments Inc., and Thin-film Micromirror ArrayTM(TMATM), which has been recently developed by Daewoo Electronics Co., are the representative examples. The display using TMATM has particularly much higher optical efficiency than other projectors. But the micromirrors manufactured by semiconductor processes have inevitable distortion because of the limitations of the manufacturing processes, so that the distortions of their surfaces have great influence on the optical efficiency of the projector. This study investigated the effects of mirror flatness on the optical performance, including the optical efficiency, of the TMATM projector. That is to say, as a part of the efforts to enhance the performance of the TMATM projector, how much influence the form errors of a micromirror surface exert on the optical efficiency and the modulation of gray scale of the projector were analyzed through a pertinent modeling and simulations.

  • PDF

Design and Fabrication of Self-aligned Parallel-plate Type Micromirror Array (자기정렬에 의한 평판전극 마이크로미러 어린이의 설계와 제작)

  • Yoo, Byung-Wook;Kim, Min-Soo;Jin, Joo-Young;Jeon, Jin-A;Park, Jae-Hyong;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.150-151
    • /
    • 2007
  • We present an one-axis parallel-plate type of bulk micromachined torsional micromirror array with single crystalline silicon (SCS) fabricated on the glass substrate. Structurally, bottom electrodes (amophous silicon) in this mirror are DRIEed along the aluminum mirror patterns on SCS, which are self-aligned with mirror plates. Tracing the history of the micromirror study, we found that few papers have been published on research for uniform driving voltages based upon the tilting direction. If there is a slight misalignment during anodic bonding between top (mirror plate) and bottom electrodes, the non-uniformity of driving voltage will be led depending on two different tilting direction. This paper discusses how much the pull-in voltages can be different due to misalignment between two electrodes. Moreover, We achieve uniform pull-in voltage regardless of misalignments in photolithography and anodic-bonding between two individual layers.

  • PDF

Fabrication and Experiment of Micromirror with Aluminum Pin-joint (알루미늄 핀-조인트를 사용한 마이크로 미러의 제작과 측정)

  • Ji, Chang-Hyeon;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.487-494
    • /
    • 2000
  • This paper describes the design, fabrication and experiments of surface-micromachined aluminum micromirror array with hidden pin-joints. Instead of the conventional elastic spring components as connection between mirror plate and supporting structure, we used pin-joint composed of pin and staples to support the mirror plate. The placement of pin-joint under the mirror plate makes large active surface area possible. These flexureless micromirrors are driven by electrostatic force. As the mirror plate has discrete deflection angles, the device can be ap;lied to adaptive optics and digitally-operating optical applications. Four-level metal structural layers and semi-cured photoresist sacrificial layers were used in the fabrication process and sacrificial layers were removed by oxygen plasma ashing. Static characteristics of fabricated samples were measured and compared with modeling results.

  • PDF

A Time-multiplexed 3d Display Using Steered Exit Pupils

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2010
  • This paper presents the multi-user autostereoscopic 3D display system constructed and operated by the authors using the time-multiplexing approach. This prototype has three main advantages over the previous versions developed by the authors: its hardware was simplified as only one optical array is used to create viewing regions in space, a lenticular multiplexing screen is not necessary as images can be produced sequentially on a fast 120Hz LCD with full resolution, and the holographic projector was replaced with a high-frame-rate digital micromirror device (DMD) projector. The whole system in this prototype consists of four major parts: a 120Hz high-frame-rate DMD projector, a 49-element optical array, a 120Hz screen assembly, and a multi-user head tracker. The display images for the left/right eyes are produced alternatively on a 120Hz direct-view LCD and are synchronized with the output of the projector, which acts as a backlight of the LCD. The novel steering optics controlled by the multiuser head tracker system directs the projector output to regions referred to as exit pupils, which are located in the viewers’eyes. The display can be developed in the "hang-on-the-wall"form.

Selective surface modification for biochip with micromirror array (마이크로미러를 사용한 바이오칩의 선택적 표면 개질을 위한 광변조 실험)

  • Lee, Kook-Nyung;Sin, Dong-Sik;Lee, Yoon-Sik;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2257-2259
    • /
    • 2000
  • This paper reports on the design, fabrication and driving experiment of micro mirror array(MMA) for lithography process to apply to biochip fabrication Photolithography technology is applied to activate specific area on the surface of modified glass surface, DNA monomers are bound on the activated area of the glass surface. After repeat of DNA monomer synthesizing process, DNA single strand probes could be solid-synthesized on the glass substrate. Without using photomask, photolithography process is tried using micro mirror array(MMA). Photomask or mask alignment is not required in maskless photolithography process using micro mirror array.

  • PDF

Single crystalline silicon micyomirror array for data communication applications (정보통신 소자 응용을 위한 단결정 실리콘 마이크로 미러 어레이)

  • Jang Yun-Ho;Lee Kook-Nyung;Kim Yong-Kweon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.93-95
    • /
    • 2003
  • We have designed and fabricated a micromirror array using single crystalline silicon (SCS) for data communication applications. The mirror array has $16{\times}16$ micromirrors and each mirror has $120{\mu}m{\times}100{\mu}m$ reflective surface. Electrostatic force was adopted as a driving mechanism. The spring dimensions were determined using relationship between spring dimensions and driving voltage. The designed tilting angle was $9.6^{\circ}$, and measured tilting angle according to applied voltages were experimented. The response time was measured using He-Ne laser and position sensitive diode (PSD), and lifetime was checked for reliability proof.

  • PDF

MEMS 기술을 이용한 프로젝션 TV의 개발동향과 전망

  • 최범규
    • 전기의세계
    • /
    • v.45 no.9
    • /
    • pp.37-41
    • /
    • 1996
  • MEMS 기술에 의해 개발되고 있는 많은 제품들 가운데 가장 잠재력 있고 큰 시장을 가진 대형 projector의 개발은 핵심 chip이 현재 DMD(Digital Micromirror Device), AMA(Actuated Mirror Array), 그리고 GLV(Grating Light Valve) 방식으로 진행되고 있으며 TI사가 개발 중인 DMD projector가 상품화에 근접해 있으며 고화질의 시제품을 SID(Society for Information Display) 국제 전시회에 출품하여 전세계 연구원들의 이목을 끌었으며 앞으로 어떻게 수율을 높이고 광학계의 단순화를 이루어 제작비를 낮추는 가가 관심의 초점이다. MEMS 연구를 하는 한 사람으로서의 사견으로도 이 제품이 성공하여야 범세계적으로 일어나고 있는 MEMS 기술이 더욱 확실한 신기술로서의 지위를 갖고 연구되리라 믿는다.

  • PDF

Expanded Exit-Pupil Holographic Head-Mounted Display With High-Speed Digital Micromirror Device

  • Kim, Mugeon;Lim, Sungjin;Choi, Geunseop;Kim, Youngmin;Kim, Hwi;Hahn, Joonku
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.366-375
    • /
    • 2018
  • Recently, techniques involving head-mounted displays (HMDs) have attracted much attention from academia and industry owing to the increased demand for virtual reality and augmented reality applications. Because HMDs are positioned near to users' eyes, it is important to solve the accommodation-vergence conflict problem to prevent dizziness. Therefore, holography is considered ideal for implementing HMDs. However, within the Nyquist region, the accommodation effect is limited by the space-bandwidth-product of the signal, which is determined by the sampling number of spatial light modulators. In addition, information about the angular spectrum is duplicated over the Fourier domain, and it is necessary to filter out the redundancy. The size of the exit-pupil of the HMD is limited by the Nyquist sampling theory. We newly propose a holographic HMD with an expanded exit-pupil over the Nyquist region by using the time-multiplexing method, and the accommodation effect is enhanced. We realize time-multiplexing by synchronizing a high-speed digital micromirror device and a liquid-crystal shutter array. We also demonstrate the accommodation effect experimentally.

Fabrication of Microstructure Array using the Projection Microstereolithography System (전사방식 마이크로광조형을 이용한 배열 형태 미세 구조물 가공)

  • Choi, Jae-Won;Ha, Young-Myoung;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.138-143
    • /
    • 2007
  • Microstereolithography technology is similar to the conventional stereolithography process and enables to fabricate a complex 3D microstructure. This is divided into scanning and projection type according to aiming at precision and fabrication speed. The scanning MSL fabricates each layer using position control of laser spot on the resin surface, whereas the projection MSL fabricates one layer with one exposure using a mask. In the projection MSL, DMD used to generate dynamic pattern consists of $1024{\times}768$ micromirrors which have $13.68{\mu}m$ per side. The fabrication range and resolution are determined by the field of view of the DMD and the magnification of the projection lens. If using the projection lens with high power, very fine microstructures can be fabricated. In this paper, the projection MSL system adapted to a large surface for array-type fabrication is presented. This system covers the meso range, which is defined as the intermediate range between micro and macro, with a resolution of a few ${\mu}m$. The fabrication of array-type microstructures has been demonstrated to verify the performance of implemented system.