• Title/Summary/Keyword: Microcystis sp.

Search Result 89, Processing Time 0.026 seconds

Effect of Chlorination on Disinfection Byproducts Production and Release of Microcystins from Bloom-forming Algae (녹조현상 원인조류들의 염소처리에 의한 소독부산물 생성 및 microcystins 유출)

  • Park, Hae-Kyung;Seo, Yong-Chan;Cho, Il-Hyung;Park, Byung-Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.513-520
    • /
    • 2006
  • The effect of chlorination on disinfection byproducts (DBPs) production from bloom-forming freshwater algae including 7 strains of cyanobacteria and 6 strains of diatoms was investigated. The release and degradation of hepatotoxin (microcystins) by the chlorination on Microcystis under differential condition of the chlorination time and dose were also investigated. The disinfection byproducts formation potentials (DBPFP) of cyanobacterial species and diatoms were ranged from 0.017 to $0.070{\mu}mol\;DBPs/mg$ C and from 0.129 to $0.708{\mu}mol\;DBPs/mg$ C respectively. Among three major groups of DBPs, haloacetonitrils (HANs) was major product in most test strains except Aphanizomenon sp. and Oscillatoria sp. Haloacetic acids (HAAs) was less than 5 % of total DBPs. Chloroform and dichloroacetonitril (DCAN) were dominant compounds in trihalomethanes (THMs) and HANs respectively. After 4 hours chlorination of toxic Microcystis aeruginosa under the dose range of 0.5 to $10mg\;Cl_2/L$, the concentration of intracellular microcystins decreased, but dissolved dissolved microcystins concentration increased with the treatment of more than $3mg\;Cl_2/L$. However the total amount of microcystins was almost constant even at $10mg\;Cl_2/L$ of chlorination. To conclude, our results indicate that the chlorination causes algal cell lysis and release of intracellular microcystins in the intact form to surrounding waters.

Technical and Strategic Approach for the Control of Cyanobacterial Bloom in Fresh Waters (담수수계에서 남조류 증식억제의 기술적, 전략적 접근)

  • Lee, Chang Soo;Ahn, Chi-Yong;La, Hyun-Joon;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Cyanobacteria (blue-green algae) are not only the first oxygenic organisms on earth but also the foremost primary producers in aquatic environment. Massive growth of cyanobacteria, in eutrophic waters, usually changes the water colour to green and is called as algal (cyanobacterial) bloom or green tide. Cyanobacterial blooms are a result of high levels of primary production by certain species such as Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp. and Phormidium sp. These cyanobacterial species can produce hepatotoxins or neurotoxins as well as malodorous compounds like geosmin and 2-methylisoborneol (MIB). In order to solve the nationwide problem of hazardous cyanobacterial blooms in Korea, the following technically and strategically sound approaches need to be developed. 1) As a long-term strategy, reduction of the nutrients such as phosphorus and nitrogen in our water bodies to below permitted levels. 2) As a short term strategy, field application of combination of already established bloom remediation techniques. 3) Development of emerging convergence technologies based on information and communication technology (ICT), environmental technology (ET) and biotechnology (BT). 4) Finally, strengthening education and creating awareness among students, public and industry for effective reduction of pollution discharge. Considering their ecological roles, a complete elimination of cyanobacteria is not desirable. Hence a holistic approach mentioned above in combination to addressing the issue from a social perspective with cooperation from public, government, industry, academic and research institutions is more pragmatic and desirable management strategy.

Effects of Nutrients and N/P Ratio Stoichiometry on Phytoplankton Growth in an Eutrophic Reservoir (부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.36-46
    • /
    • 2004
  • We evaluated the effect of limiting nutrients and N/P ratio on the growth of phytoplankton in a small eutrophic reservoir from November 2002 to December 2003. Nutrient limitation was investigated seasonally using nutrient enrichment bioassay (NEB). DIN/DTP and TN/TP ratio (by weight) of the reservoir during the study period ranged 17${\sim}$187 and 13${\sim}$60, respectively. Most of nitrogen in the reservoir account for $NO_3$-N, but sharp increase of ammonia was evident during the spring season. Seasonal variation of dissolved inorganic phosphorus concentration was relatively small. DTP ranged 26.5${\sim}$10.1 ${\mu}g\;P\;L^{-1}$, and the highest and lowest concentration was observed in August and December, respectively. Chlorophyll a concentration ranged 28.8${\sim}$109.7 ${\mu}g\;L^{-1}$, and its temporal variation was similar to that of cell density of phytoplankton. Dominant phytoplankton species were Bacillariphyceae (Melosira varians) and Chlorophyceae (Dictyosphaerium puchellum) in Spring (March${\sim}$April). Cyanophyceae, such as Osillatoria spp., Microcystis spp., Aphanizomenon sp. dominated from May to the freezing time. TN/TP ratio ranged from 46 to 13 (Avg. 27${\pm}$6) from June to December when cyanobacteria (Microcystis spp.) dominated. p limitation for algal growth measured in all NEB experiments (17cases), while N limitation occurred in 8 out of 17 cases. The growth rates of phytoplankton slightly increased with decreasing of DIN/DTP ratio. Evident increase was observed in the N/P ratio of > 30, and it was sustained with DTP increase until 50 ${\mu}g\;P\;L^{-1}$. Under the same N/P mass ratio with the different N concentrations (0.07, 0.7and 3.5 mg N $L^{-1}$), Microcystis spp. showed the highest growth rate in the N/P ratio of< 1 with nitrogen concentration of 3.5 mg N $L^{-1}$). The responses of phytoplankton growth to phosphate addition were clearly greater with increase of N concentration. These results indicate that the higher nitrogen concentration in the water likely induce the stronger P-limitation on the phytoplankton growth, while nitrogen deficiency is not likely the case of nutrient limitation.

Effect of Zeta Potential of Clay and Algae Particles on Flotation Efficiency (점토와 조류입자의 제타전위가 부상분리 효율에 미치는 영향)

  • Choi, Do-Young;Kim, Seong-Jin;Jung, Heung-Jo;Lee, Se-Ill;Paik, Do-Hyeon;Lee, Jae-Wook;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.437-445
    • /
    • 2005
  • Zeta potential is a key parameter of double layer repulsion for individual particles and can usually be used to interpret the trend of coagulation efficiency. This study focused on the measurement of zeta potential of algae and clay under various experimental conditions including water characteristics (pure water, stream water, reservoir water) and coagulant dose (10~50 mg/L). Results showed that the variation of zeta potential was highly sensitive depending on the water characteristics and coagulation conditions. Zeta potential of two genera of algae (anabaena sp. and microcystis sp.) were changed highly with coagulant dosage, especially. On the basis of trajectory analysis, bubble-floc collision efficiency simulated in terms of zeta potential was fitted well with removal efficiency of chlorophyll-a from algae particles. It was found that the control of zeta potential was important for effective removal of algae particles.

Dynamics of Phytoplankton Community and the Physico-chemical Environmental Factors in Youngchun Dam (영천댐의 식물플랑크톤 군집과 환경요인의 동태)

  • Kim, Sook-Chan;Kim, Han-Soon
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.227-234
    • /
    • 2004
  • A study on the dynamics of phytoplankton community and the physico-chemical environmental factors was performed biweekly from April 1998 to March 1999 in Youngchun Dam. A total 72 phytoplankton taxa was identified and dominant taxa were blue-green algae and diatoms. The highest value of phytoplankton standing crop (24,826cells·ml$^{-1}$) was observed in September 7, 1998, the blooming period of blue-green algae Phormidium sp., while the lowest (318cells·ml$^{-1}$) was measured in June 18, 1999. The phytoplankton communities were dominated by blue-green algae of Anabaena planktonica, Microcystis aeruginosa and Phormidium sp. during the summer and autumn periods and were dominated by diatoms of Synedra acus and Aulacoseira spp. during the spring and winter periods. Secchi disc transparency, chlorophyll-a, total nitrogen, total phosphorus and silicate concentration were varied in the ranges of 0.4-2.5 m, 2.4-32.2mg·m$^{-1}$, 0.845-2.352mg·l$^{-1}$, 0.005-0.093mg·l$^{-1}$, 0.2-15.7mg·l$^{-1}$, respectively. The trophic status of Youngchun Dam were estimated eutrophic according to Lake Trophic States Index (LTSI).

Changes of Dominant Species of Phytoplanktons and Hydrological Causes of Water Bloom in the Lake Unmun, Cheongdo-gun, Gyeonsangbuk-do (경상북도 청도군, 운문호의 식물플랑크톤 우점종 변동과 수화현상의 수문학적 발생원인)

  • Kim, Mi-Kyung;Lee, Soon-Hwa;Lee, Chul-Hwee
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • The variations of species compositions, standing crops and seasonal succession of phytoplanktons including Cyanophyceae, Chlorophyceae and Bacillariophyceae were investigated with physico-chemical elements of water to clarify the causes of water bloom according to the water depth in the Lake Unmun. The increased amounts of turbidity, T-N, T-P and SS originated from heavy rain and typhoon in the middle of June provoked to produce phytoplanktons. In July and August, the dominant species was Peridinium sp., while the subdominant species was Microcystis aeruginosa. In October, Aulacoseira distans was dominant and Asterionella formosa was subdominant. During the period of water shortage, the concentrated pollutants caused the decrease of precipitation, the long stagnation time of water body and the mixed pollutants by upwelling as decreasing water temperature could accelerate the water bloom. The preventives to decrease microalgal generation should be controled by the stagnation time of water body by increasing outflow to intercept water bloom such as ulacoseira sp. in October as well as summer.

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Effects of Zooplankton Grazing on the Suppression of Harmful Algal Blooms by the Rotifer Brachionus calyciflorus in Freshwater Ecosystems

  • Baek, Seung-Ho;Hong, Sung-Su;Song, Shin-Young;Lee, Hae-Ok;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • To study the influence of the rotifer Brachionus calyciflorus on harmful algal bloom suppression, we focused on assessing the rotifer's abilities using several prey species : Microcystis aeruginosa, Synechocystis sp., Chlorella vulgaris and Coelastrum sp. of the warm-weather species and the cold-weather centric diatom Stephanodiscus hantzchii. Grazing effects and growth rates of rotifers B. calyciflorus were 94.5% and $1.29d^{-1}$, respectively, for Synechocystis sp., 87.4% and $0.60d^{-1}$, respectively, for M. aeruginosa, 95.2% and $0.65d^{-1}$, respectively, for C. $vulgaris^{TM}$, 78.6% and $0.45d^{-1}$, respectively, for C. vulgaris UTEX., 86.5% and $0.99d^{-1}$, respectively, for Coelastrum sp., and 82.6% and $0.40d^{-1}$, respectively, for S. hantzchii. Of these, although the growth of Synechocystis and Coelastrum was effectively suppressed by rotifer grazing, efficient suppression effects on Stephanodiscus blooms were unexpected. The present study revealed that reproduction of B. calyciflorus was greatly influenced by its food types in the initial stages and the efficiencies of bio-agents as sole food sources vary depending on the target algae and the agent.

Comparative Genome analysis of the Genus Curvibacter and the Description of Curvibacter microcysteis sp. nov. and Curvibacter cyanobacteriorum sp. nov., Isolated from Fresh Water during the Cyanobacterial Bloom Period

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Seonah Jeong;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1428-1436
    • /
    • 2023
  • The three Gram-negative, catalase- and oxidase-positive bacterial strains RS43T, HBC28, and HBC61T, were isolated from fresh water and subjected to a polyphasic study. Comparison of 16S rRNA gene sequence initially indicated that strains RS43T, HBC28, and HBC61T were closely related to species of genus Curvibacter and shared the highest sequence similarity of 98.14%, 98.21%, and 98.76%, respectively, with Curvibacter gracilis 7-1T. Phylogenetic analysis based on genome sequences placed all strains within the genus Curvibacter. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the three strains and related type strains supported their recognition as two novel genospecies in the genus Curvibacter. Comparative genomic analysis revealed that the genus possessed an open pangenome. Based on KEGG BlastKOALA analyses, Curvibacter species have the potential to metabolize benzoate, phenylacetate, catechol, and salicylate, indicating their potential use in the elimination of these compounds from the water systems. The results of polyphasic characterization indicated that strain RS43T and HBC61T represent two novel species, for which the name Curvibacter microcysteis sp. nov. (type strain RS43T =KCTC 92793T=LMG 32714T) and Curvibacter cyanobacteriorum sp. nov. (type strain HBC61T =KCTC 92794T=LMG 32713T) are proposed.

In Situ Identification of Cyanobacteria

  • Ahn Tae-Seok;Hong Sun-Hee;Chung Hyun-Mi;Belkova Natalia L.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.121-127
    • /
    • 2001
  • Seven cyanobacteria strains (Anabaena macrospora NIERl0016, Oscillatoria sp. NIER10042, Microcystis aeruginosa NIER10015, M. ichtyoblabe BIER10025, BIER10040, M. novacekii NIER10029, M. wesenbergii NIER10068) were tested with four rRNA - targeted oligonucleotide probes labelled with horseradish peroxidase (HRP) and specific for cyanobacteria. Non- fluorescent detection of hybridization signal was used. The hybridization with artificial mixture of cyanobacteria have shown the possibility to use 2 species-specific probes in duplicate hybridization and detection with different colored substrates.

  • PDF