• Title/Summary/Keyword: Microcystis bloom

Search Result 108, Processing Time 0.022 seconds

Relation between Rainfall and Phytoplankton Community in Daechung Reservoir (대청호에서 강우와 식물플랑크톤 군집의 관계)

  • Joung Seung-Hyun;Ahn Chi-Yong;Choi Aeran;Jang Kam-Yong;Oh Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.57-63
    • /
    • 2005
  • The phytoplankton community, environmental factors, and rainfall were investigated from July to October in 2001 and 2003 on Dam site in Daechung Reservoir. The monthly average rainfall in the investigated period were 91.3 and 265.3 mm in 2001 and 2003, respectively. The maximum chlorophyll a concentration was observed higher at 131.5 ㎍ L/sup -1/ in 2003 than at 45.4 ㎍ L/sup -1/ in 2001. The cyanobacterial number in 2001 was counted up to over 200,000 cells mL/sup -1/, which was much higher than the maximum number of 49,000 cells mL/sup -1/ in 2003. The relative abundance of cyanobacteria in the phytoplankton community was about 97% in 2001 and 74% in 2003. Microcystis spp. were absolutely dominant species in 2001, while a couple of cyanobacteria such as Oscillatoria spp., Phormidium spp. Chroococcus spp. and Microcystis spp. were dominant species in 2003. Consequently, it seemed that rainfall affected the diversity of phytoplankton species and decreased the density of bloom-forming cyanobacteria.

Effects of CellCaSi and Bioflocculant on the Control of Algal Bloom (규산질다공체와 미생물응집제의 녹조제어 효과)

  • 박명환;이석준;윤병대;오희목
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.129-135
    • /
    • 2001
  • The effects of CellCaSi and bioflocculant on the control of algal bloom were investigated in enclosures in a small eutrophic pond. The bioflocculant produced by a bacterial strain S-2 was finally selected to remove Microcystis aeruginosa which was a dominant species of algal bloom in the pond. Enclosure experiment showed that phosphorus concentration decreased dramatically from $131\mu{g}\ell^{-1}$ (Control) to $1-14\mu{g}\ell^{-1}$ in three CellCaSi-enriched enclosures. Chlorophyll $-\alpha$ concentration also decreased from $215\mu{g}\ell^{-1}$ (Control) to $59\mu{g}\ell^{-1}$ by the addition of CellCaSi $(1g\ell^{-1}$, bioflocculant $(2ml\ell^{-1}$, calcium chloride $(1g\ell^{-1}$ and ferric chloride $(2mg\;Fe\ell^{-1})$ in Enclosure 4. From the results of the mouse acute toxicity test of the S-2 bioflocculant and the goldfish survival test in enclosures, it seems that both the S-2 bioflocculant and the CellCaSi do not show any severe toxicity in water system. Consequently, it was concluded that the bioflocculant and the CellCaSi could be used to control algal bloom in eutrophic waters by removing phosphorus and chlorophyll$-\alpha$.

  • PDF

Spatio-temporal Characteristics of Cyanobacterial Communities in the Middle-downstream of Nakdong River and Lake Dukdong (낙동강 중, 하류 및 덕동호의 시·공간적 남조류 군집 특성)

  • Park, Hae-Kyung;Shin, Ra-Young;Lee, Haejin;Lee, Kyung-Lak;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.286-294
    • /
    • 2015
  • Temporal and spatial characteristics of cyanobacterial communities at the monitoring stations for Harmful Algal Bloom Alert System (HABAS) in Nakdong River and Lake Dukdong were investigated for two years (2013 to 2014). A total of 30 cyanobacterial species from 14 genera were found at the survey stations. Microcystis sp. showed maximum cell density in the total cyanobacterial community in August, 2014 at ND-2 and in September, 2013 at ND-3 station. Lynbya limnetica and Geitlerinema sp., non-target species for alert criteria showed maximum cell density at ND-1 (August, 2013) and Dam station of Lake Dukdong (September, 2014), respectively. Total cyanobacterial cell density and the relative abundance of four target genera (Microcystis, Anabaena, Aphanizomenon and Oscillatoria spp.) for alert criteria was relatively lower in the mesotrophic Lake Dukdong than at the eutrophic riverine stations of Nakdong River, indicating cyanobacterial density and the RA of target genera is affected by the trophic state of the monitoring stations. Simulating the alert system using phycocyanin concentration as an alert criterion resulted in the longer period of alert issued compared to the period of alert issued using the current criterion of harmful cyanobacterial cell density due to the influence of phycocyanin concentration from non-target cyanobacterial species.

Dynamics of Cyanobacterial Toxins in the Downstream River of Lake Suwa (Suwa호 하류하천에서의 남조류 독소의 동태)

  • Kim, Bom-Chul;Park, Ho-Dong;Katagami, Yukimi;Hwang, Soon-Jin;Kim, Ho-Sub
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.45-53
    • /
    • 2001
  • Transport of cyanobacterial toxins (microcystin-LR, -RR, -YR) were assessed from a eutrophic lake, Lake Suwa, through the outflowing river, the Tenryu River, and its irrigation channel branch. Temporal variation of phytoplankton species composition in the river coincided with those of the lake; Microcystis ichthyoblabe dominated from June to July, and M. viridis dominated from August to September. When cyanobacterial bloom occurred, microcystins were continuously detected at the concentration of $0.3{\sim}3.2\;{\mu}g/l$ even at 32 km downstream. The change of the content of three microcystin variants were related both with the total cell density of Microcystis and with the change of Microcystis species composition. When Microcystis ichthyoblabe dominated during July, only microcystin-RR (MC-RR) and -LR (MC-LR) were detected, while when Microcystis viridis dominated between August and October, microcystin-RR,-YR (MC -YR) and -LR were detected. Along 29 km flowing distance (flow time 11 hours) between site 2 and site 5 in the Tenryu River, cyanobacterial density and microcystin concentration were reduced by 73% and 72%, respectively, which is mostly contributed by the dilution effect of tributary waters (61% and 57%, respectively) . In the artificial irrigation channel microcystins and cyanobacterial cells were decreased less than in the natural river. The results indicate that cyanobacterial toxins can be transported far downstream without much removal and give hazards to water usage in downstream of eutrophic lakes with cyanobacterial blooms.

  • PDF

Superiority comparison of biologically derived algicidal substances (naphthoquinone derivative) with other optional agents using microcosm experiments (Microcosm 실험을 이용한 생물유래 살조물질 Naphthoquinone 유도체의 유해 남조류 제어효과 및 기존물질과의 우수성 비교)

  • Joo, Jae-Hyoung;Park, Bum Soo;Kim, Sae Hee;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.114-126
    • /
    • 2020
  • Bloom-forming toxic cyanobacteria Microcystis spp. are common in the summer season in temperate freshwater ecosystems. Often, it leads to the degradation of water quality and affects the quality of drinking water. In a previous study, NQ (naphthoquinone) compounds were shown to be effective, selective, and ecologically safe algicides for Microcystis spp. blooms. To analyze the superiority of developed NQ derivatives, we conducted a microcosm experiment using clay, which is frequently used in South Korea. Similar to previous studies, the NQ 40 and NQ 2-0 compounds showed high algicidal activities of 99.9% and 99.6%, respectively, on Microcystis spp. at low concentrations (≥1 μM) and enhanced phytoplankton species diversity. However, when treated with clay, a temporary algicidal effect was seen at the beginning of the experiment that gradually increased at the end. In addition, treatment with the NQ compounds did not affect either the abiotic or biological factors, and similar trends were observed with the control. These results showed that the NQ 2-0 compound was more effective, with no ecosystem disturbance, and more economical than the currently used clay. These results suggest that NQ 2-0 compound could be a selective, economically and ecologically safe algicide to mitigate harmful cyanobacterial blooms in the field.

Technical and Strategic Approach for the Control of Cyanobacterial Bloom in Fresh Waters (담수수계에서 남조류 증식억제의 기술적, 전략적 접근)

  • Lee, Chang Soo;Ahn, Chi-Yong;La, Hyun-Joon;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Cyanobacteria (blue-green algae) are not only the first oxygenic organisms on earth but also the foremost primary producers in aquatic environment. Massive growth of cyanobacteria, in eutrophic waters, usually changes the water colour to green and is called as algal (cyanobacterial) bloom or green tide. Cyanobacterial blooms are a result of high levels of primary production by certain species such as Microcystis sp., Anabaena sp., Oscillatoria sp., Aphanizomenon sp. and Phormidium sp. These cyanobacterial species can produce hepatotoxins or neurotoxins as well as malodorous compounds like geosmin and 2-methylisoborneol (MIB). In order to solve the nationwide problem of hazardous cyanobacterial blooms in Korea, the following technically and strategically sound approaches need to be developed. 1) As a long-term strategy, reduction of the nutrients such as phosphorus and nitrogen in our water bodies to below permitted levels. 2) As a short term strategy, field application of combination of already established bloom remediation techniques. 3) Development of emerging convergence technologies based on information and communication technology (ICT), environmental technology (ET) and biotechnology (BT). 4) Finally, strengthening education and creating awareness among students, public and industry for effective reduction of pollution discharge. Considering their ecological roles, a complete elimination of cyanobacteria is not desirable. Hence a holistic approach mentioned above in combination to addressing the issue from a social perspective with cooperation from public, government, industry, academic and research institutions is more pragmatic and desirable management strategy.

Effect of Temporary Loading of Nonylphenol on a Summer Planktonic Community in a Eutrophic Pond

  • Baek, Seung-Ho;Katano, Toshiya;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.519-529
    • /
    • 2008
  • Recent studies reveal one of the representative endocrine disrupters of nonylphenol affects on the composition of a planktonic community. Since nonylphenol is sometimes discharged into eutrophic waters, we monitored planktonic community composition of a eutrophic pond after receiving nonylphenol when cyanobacterium Microcystis aeruginosa mainly dominated. The experiment was carried out two times using small-scale microcosms in a laboratory. In both two experiments, ciliate abundances significantly decreased when nonylphenol was added. On the seventh day, the ciliate abundances in $10{\mu}g\;L^{-1}$ added treatments decreased by 36.9% in the first experiment and 33.6% in the second, when compared to the control. The response of other planktonic groups was less obvious to nonylphenol addition. In particular, in the first experiment, Chl. b/Chl. $\alpha$ and Chl. c/Chl. $\alpha$ significantly increased with the addition of nonylphenol, while total Chl. $\alpha$ concentration did not change. Indeed, bacillariophyceae and chlorophyceae abundances tended to increase with nonylphenol dosing. From these results, we tentatively hypothesized that nonylphenolloading positively affects on abundances of edible phytoplankton such as Scenedesmus spp. and diatoms by releasing from grazing pressure due to decrease in ciliate abundances. The present study emphasizes that the indirect effect of endocrine disrupters should be paid more attention when freshwater resources are polluted by them.

Seasonal Cycle of Phytoplankton in Aquaculture Ponds in Bangladesh

  • Affan, Abu;Jewel, Abu Syed;Haque, Mahfuzul;Khan, Saleha;Lee, Joon-Baek
    • ALGAE
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • A study on the seasonal changes in the phytoplankton community was carried out in four aquaculture ponds of Bangladesh over a period of 16 months from August 2000 to November 2001. Out of 45 phytoplankton species identified, 30 belong to Cyanophyceae, 7 to Chlorophyceae, 5 to Bacillariophyceae and 3 to Euglenophyceae. The highest phytoplankton abundance was observed in spring followed by early autumn, summer, and the lowest was in winter. The annual succession of Cyanophyceae was characterized by spring and early autumn period dominated by Microcystis sp. Anabaena sp. and Planktolymbya sp. with Microcystis sp. as the main blue-green algae represented. Chlorophyceae was characterized by rainy season domination of Chlorella vulgaris, Pediastrum sp. and Scenedesmus denticulatus with maximum abundance of Chlorella vulgaris. Whereas Bacillariophyceae was dominant during the winter period. Navicula angusta and Cyclotella meneghiniana were the most frequently occurring species of Bacillariophyceae throughout the study period. Euglenophyceae was dominant in late autumn and Euglena sp. was the dominant species. The effect of various physicochemical water quality parameters on the seasonal distribution and succession of the above mentioned phytoplankton population as well as the interaction and eutrophication are discussed.

A Study on the Eutrophication in Artificial Lakes in Chonnam Area (全南地方의 一部 人工湖水의 富營養化에 관한 조사연구)

  • Kim, Seung Ho
    • Journal of Environmental Health Sciences
    • /
    • v.11 no.1
    • /
    • pp.15-28
    • /
    • 1985
  • In order to analyze the water quality in artificial lakes in Chonnam area, a chemical and biological examination of Dongbock Lake and Changsung Lake was conducted from September to December 1983 and May 1984. A summary of the surveyed results is as follows 1. In Dongbock Lake, pH ranged from 7.2-8.1, D.O.: 8.2-12.6mg/l, B.O.D.: 4.4-22.1 mg/l, C.O.D.: 1.0-3.4rag/l, Cl$^-$: 5.9-11.9mg/l, Total-P: 0.001-0.071 mg/l, and Total -N: 0.016-0.697 mg/l, respectively. 2. In Changsung Lake, pH ranged from 7.2-8.1, D.O.: 8.1-9.8mg/l, B.O.D.: 0.9-2.9mg/l, C.O.D.: 1.9-3.4mg/l. Total- P: 0.006-0.016mg/l and Total -N:0.006-0.033mg/l, respectively. 3. The Phytoplankton identified in this investigation were distributed in a total of 46 genera and 76 spedes in Dongbock Lake 37 genera and 45 species in Changsung Lake. 4. In Dongbock Lake, it was found that the dominant algae were Melosira sp., Microcystis sp. and Synedra sp. in September Melosira sp. and Microcytis sp. in October, but Cymbella sp., Naviculla sp. and Nitzschis sp. were also observed in OctoberAsterionella sp., Melosira sp. and Microsystis sp. in November and Melosira sp., Asterionella sp sp. and Synedra sp. in December 1983. 5. In Changsung Lake, it was found that the dominant algae were Melosira sp., Lyngrbya sp. and Microcystis in September Melosira sp. and Synedra sp. in October and November and Melosira sp., Lyngbya sp. and Asterionella sp. in December 1983. The dominant algae were Melosira sp., Lyngbya sp. and Euglena sp. in May 1984. 6. It was found that the dominant algae in both Dongbock and Changsung Lakes were Microcystis sp., Melosira sp. and Asterionella sp.. Which are strongly related with water-bloom. Therefore, it could be suggested that the eutrophication phenomena is going to occur very easily in Dongbock Lake and possibly in Changsung Lake.

  • PDF

Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing

  • Boopathi, Thangavelu;Wang, Hui;Lee, Man-Duck;Ki, Jang-Seu
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.424-437
    • /
    • 2018
  • The incidence of freshwater algal bloom has been increasing globally in recent years and poses a major threat to environmental health. Cyanobacteria are the major component of the bloom forming community that must be monitored frequently. Their morphological identities, however, have remained elusive, due to their small size in cells and morphological resemblances among species. We have analyzed molecular diversity and seasonal changes of cyanobacteria in Paldang Reservoir, Korea, using morphological and 16S rRNA pyrosequencing methods. Samples were collected at monthly intervals from the reservoir March-December 2012. In total, 40 phylotypes of cyanobacteria were identified after comparing 49,131 pyrosequence reads. Cyanobacterial genera such as Anabaena, Aphanizomenon, Microcystis and Synechocystis were predominantly present in samples. However, the majority of cyanobacterial sequences (65.9%) identified in this study were of uncultured origins, not detected morphologically. Relative abundance of cyanobacterial sequences was observed as high in August, with no occurrence in March and December. These results suggested that pyrosequencing approach may reveal cyanobacterial diversity undetected morphologically, and may be used as reference for studying and monitoring cyanobacterial communities in aquatic environments.