• Title/Summary/Keyword: Microcones

Search Result 4, Processing Time 0.017 seconds

Electrochemical Synthesis of TiO2 Microcones/CNT Composites as Anode Material for Lithium Ion Batteries (TiO2 마이크로콘/CNT 복합체의 전기화학적 합성 및 리튬 이온 전지 음극 소재로의 응용)

  • Shin, Nahyun;Kim, Yong-Tae;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.509-513
    • /
    • 2020
  • The performance of TiO2 microcones/CNT composites as an anode material for lithium ion batteries was investigated. TiO2 microcones/CNT composites were prepared by the polarization followed by electrophoretic deposition approaches on anodic TiO2 microcones, which were composed of individual nanofragments resulting in a large surface area where lithium ion can be stored. Compared to pristine TiO2 microcones, TiO2 microcones/CNT composite electrodes showed higher areal capacity with a stable cyclability due to an enhanced electrical and lithium ion conductivity. Furthermore, TiO2 microcones/CNT composite electrodes exhibited good cycle life characteristics and excellent rate retention under a high current density of up to 20 C.

Formation of Nb2O5 Microcone Structure in NaF Electrolyte by Anodization (NaF 전해질 양극산화에 의한 마이크로콘 구조 니오븀 산화물 제조)

  • Jeong, Bong-Yong;Jung, Eun-Hye
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.625-629
    • /
    • 2011
  • In this study, we show that by anodization of Nb in NaF electrolytes microcone niobium oxide layers can be formed under a range of experimental conditions. It is found that a single NaF electrolyte leads to the formation of microcones. At 1 M NaF, 40 V, 1 h, well-ordered microcones were generated on Nb discs. XRD results show that the initially formed anodic oxide is amorphous, but an amorphous to crystalline transition occurs during anodization. For the formation of favorable microcones, it is considered that proper parameters such as electrolyte concentration, voltage, anodizing time are necessary according to the kind of electrolytes.

Fabrication of Niobium Oxide Nanorods by the Anodization Method (양극산화법에 의한 니오븀 산화물 나노로드 제조)

  • Jung, Eun-Hye;Chang, Jeong-Ho;Jeong, Bong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.196-200
    • /
    • 2011
  • The formation of niobium oxide microcones on niobium substrates was investigated in NaF to the HF electrolytes. This condition builds on the uniqueness of the microstructures niobium oxide. The dimensions and integrity of the bulk microstructures were found to be strongly dependent on potential, temperature, electrolyte composition, and anodization time. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodization. From XRD patterns of the anodized specimens, the microcones consisted of crystalline $Nb_2O_5$. We demonstrated niobium oxide microcone structures with nanorods. The anodized niobium oxide microcone texture revealed nanorod bundles. The surface of $Nb_2O_5$ microcones is very regular and has a nano-scale. The surface morphologies of the nanorods were examined using FE-SEM. EDS analyses show that the anodically prepared niobium oxide consists of $Nb_2O_5$. The aim of this study is to find the condition of forming the favorable nanorods by anodization method.

Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries (양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구)

  • Kim, Yong-Tae;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2021
  • With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.