• Title/Summary/Keyword: Microcalorimeter

Search Result 13, Processing Time 0.029 seconds

Design and fabrication of a highly sensitive microcalorimetric biosensor by bulk micromachining (벌크 마이크로 머시닝을 이용한 고감도 미세 칼로리미터의 설계 및 제작)

  • Yoon, S.I.;Kim, J.H.;Kwak, B.S.;Kim, Y.J.;Jung, H.I.
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.164-167
    • /
    • 2006
  • Calorimeter is one of widely used biosensors. Conventional or existing calorimeters are realized directly on a silicon wafer which has very high thermal conductivity. It results in decreasing temperature difference between junctions and it makes a sensitivity of calorimeter to be decreased. In this study, the microcalorimeter was made by using MEMS(Micro Electro Mechanical Systems)-technology and hot junctions of the microcalorimeter are released from a silicon substrate to reduce loss of generated heat by reactions between biomolecules. Sensitivity of the released microcalorimeter was 18 mV/M which is 1.5 times higher than another calorimeters on silicon substrate by reactions between biotin and streptavidin.

Wide-bandwidth SQUID Current Amplifier and Control Electronics for X-ray Microcalorimeter (X-선 미소열량계 신호 검출을 위한 광대역 SQUID 전류증폭기와 조절 회로)

  • 김진목;이용호;권혁찬;김기웅;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • Wide-bandwidth SQUID current amplifier and its control electronics have been constructed for detecting pulse outputs of a superconducting microcalorimeter. The current amplifier made of a double relaxation oscillation SQUID (DROS) has a bandwidth of 1.2 MHz and typical white noise level of about 6 pA/(equation omitted) Hz. To increase the dynamic range of the current amplifier, the flux-locked loop (FLL) has additional circuits to reset the integrator and to count reset numbers which present the number of passed flux quanta. In this system, dynamic range covers from -65 mA to +65 mA. SQUID electronics are controlled by software to get the optimum FLL condition, and to control the current to bias the transition edge sensor (TES). The electronics are shielded from the outside electromagnetic noises by using an aluminum case of 66 mm ${\times}$ 25 mm ${\times}$ 100 mm, and consist of 2 separate printed-circuit-boards for the current amplifier and the control electronics, respectively. The SQUID current amplifier and its control electronics will be used in TESs for detecting photons such as UV and X-ray with high energy resolution.

  • PDF

Development of a 3.5 mm Coaxial Microcalorimeter for Microwave Power Standards (3.5 mm 동축형 미소열량계 개발과 전자파전력 측정표준 확립)

  • Kwon, Jae-Yong;Kim, Jeong-Hwan;Kang, Tae-Weon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.989-996
    • /
    • 2009
  • RF and microwave power is a basic quantity in electromagnetic metrology which linked directly to major electro-magnetic quantities such as attenuation, RF voltage, antenna characteristics and field strength. This paper deals with a power meter and power sensor with associated theory for RF and microwave power measurement. We study the theory and the key aspects in design of a 3.5 mm coaxial microcalorimeter which works from 50 MHz to 26.5 GHz as a primary microwave power standard.

The Automatic Precision Measurement of RF Voltage using Power and Impedance Standards (전력과 임피던스표준을 이용한 RF전압의 정밀 자동측정)

  • Shin, Jin-Kook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.319-323
    • /
    • 2007
  • In this paper, the automatic precision measurement of RF voltage has been done using the power and impedance standards [1] in the frequency range of 50 to 1000 MHz. A coaxial microcalorimeter and an automatic network analyzer were used for the determination of the RF-DC differences and the total uncertainty is about 1.0 %. A HP computer, a commodore computer and IEEE-488 interface bus were used for measuring the effective efficiency of thermistor mount and the RF-DC difference of thermal voltage converter, All processes of measurement were accomplished by self-developed program automatically.

Measurement and Calculation of Excess Enthalpies for n-Hexane/Alkane series and NaOH/Water/Ethanol System using Isothermal Microcalorimeter (등온 미세열량계를 이용한 n-Hexane-알칸계 이성분 혼합물 및 NaOH/Water/Ethanol계의 과잉 엔탈피 측정 및 계산)

  • Choi, In Kyu;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.660-667
    • /
    • 2017
  • Equilibrium data of the mixture is essential in the design and operation of separation equipment such as distillation or extraction in chemical processes. These equilibrium data can be obtained through experiments or by calculations using the known binary parameters and the thermodynamic models. Generally, to obtain these parameters, phase equilibrium experimental data such as gas-liquid and liquid-liquid are used. In this study, the excess enthalpy of the mixture was measured using the flow type microcalorimeter which is a simpler method than phase equilibria experiments, and the parameters of various theories were obtained by using this data. In order to investigate the relationship between carbon chain length, enthalpy and binary parameters in the alkane system, excess enthalpies for the n-hexane + alkane (n-pentane, n-heptane, n-octane and n-dodecane) were measured at 298.15 K and the banary interaction parameters of Wilson, NRTL, and UNIQUAC were obtained from the experimental data. In addition, we wanted to obtain basic information on the interaction and association phenomena of the system including electrolyte applicable to various fields by using the excess enthalpy experimental data and the existing theory. First, we investigated the excess enthalpy for the NaOH / Water / Ethanol system as a basic experiment and examined the applicability using the electrolyte-NRTL (eNRTL) theory.

Excess Molar Enthalpies and Excess Molar Volumes for the Binary Mixtures {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol, and +2-(2-ethoxyethoxy)ethanol} at 298.15 K (2성분계 {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol 및 + 2-(2-ethoxyethoxy)ethanol}에 대한 298.15 K에서의 과잉몰엔탈피 및 과잉몰부피)

  • Kim, Jaewon;Kim, Moongab
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.444-452
    • /
    • 2006
  • This paper reports experimental excess molar volumes $V^E_m$ using a digital vibrating-tube densimeter and excess molar enthalpies $H^E_m$ by means of an isothermal microcalorimeter with a flow mixing cell for the binary mixtures{1,2-dichloropropane + 2-(2-methoxyethoxy)ethanol} and {1,2-dichloropropane + 2-(2-ethoxyethoxy)ethanol} at 298.15 K under atmospheric pressure. All the $V^E_m$ and $H^E_m$ of the two binary mixtures showed S-shaped forms, being negative for poor and positive for rich 1,2-dichloropropane mole fractions. These show that the excess properties were shown to be negative deviation from ideality due to the strong self-association effect among 2-(2-alkoxyethoxy)ethanol molecules at an early stage of mixing, a relatively high energy then is needed to break hydrogen bonds of 2-(2-alkoxyethoxy)ethanol with an increase ofhalogenated hydrocarbon molecular at high mole fraction of 1,2-dichloropropane. The values of excess molar properties($V^E_m$ and $H^E_m$) were fitted by the Redlich-Kister equation using Nelder-Mead's simplex pattern search method. The Wilson, NRTL, and UNIQUAC models were used to correlate the $H^E_m$ values.

RF and Microwave Power Standards from 10 MHz to 40 GHz over Decades

  • Kang, Tae-Weon;Kwon, Jae-Yong;Park, Jeong-Il;Kang, No-Weon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.88-93
    • /
    • 2018
  • Radio frequency (RF) and microwave power is one of the key quantities in the framework of electromagnetic measurement standards. Therefore, the stability of the power standard is essential to users' reliable measurements in various areas. Coaxial and waveguide thermistor mounts are used as transfer standards of RF and microwave power. Over decades, the effective efficiencies of thermistor mounts have been measured using coaxial and waveguide microcalorimeters in the frequency range of 10 MHz-40 GHz. The measurement uncertainty of the effective efficiency is evaluated. Results show that the power standards have been well maintained within the measurement uncertainty.

Excess Molar Volumes and Enthalpies for 1,2-dichloropropane + 2-methoxyethanol at the Temperature 298.15K. (1,2-dichloropropane(l) - 2-methoxyethanoI(2)계의 과잉 몰 부피 및 과잉 몰 엔탈피의 측정)

  • Kim, Moon-Gab;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.193-198
    • /
    • 2001
  • 2성분계 혼합물(1,2-dichloropropane + 2-methoxyethanol)에 대해 과잉몰 부피(excess molar volumes) $V^E$ 및 과잉 몰엔탈피(excess molar enthalpies) $H^E$를 298.15K에서 측정하였다. 혼합물의 밀도측정은 digital vibrating tube densimeter를 이용하였고, 과잉 몰엔탈피는 isothermal flow microcalorimeter를 이용하였다. 측정한 과잉 몰부피는 전 조성 영역에서 양의 편차를 나타내었으며, 과잉 몰엔탈피는 S 자형용 보였다. 또한 얻어진 data는 Nelder- Mead의 simplex method를 이용하여 Redlich-Kister 다항식에 접합 (fitting)하였다.

  • PDF