• Title/Summary/Keyword: Microbubbles

Search Result 65, Processing Time 0.028 seconds

Applicability evaluation of microbubble for membrane fouling reduction in wastewater reuse membrane process (하수재이용 막여과 공정에서 막오염 저감을 위한 마이크로버블 적용성 평가)

  • Lee, Chang-Ha;Kim, Geon-Youb;Kim, Hyung-Soo;Kim, Ji-Hoon;Lee, Kyung-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.169-175
    • /
    • 2017
  • This study applied microbubbles to reduce membrane fouling in wastewater reuse membrane processes, evaluated and compared the transmembrane pressure with or without the application of microbubbles and the cleaning efficiency with the application of aeration and microbubbles. In addition, this study analyzed foulants removed from the membrane surface. Changes in the transmembrane pressure of membranes with the presence or absence of microbubbles were observed. As a result, transmembrane pressure (TMP) increasing rate decreased twofold when applying microbubbles to realize stable operations. This study compared and evaluated cleaning efficiency applying aeration and microbubbles. As a result, the cleaning efficiency was 5% higher on average when applying microbubbles. In turbidity and total organic carbon (TOC), foulants were discharged when applying microbubbles twice as much as applying aeration. It is thought that particulate foulants precipitated on the membrane surface were more likely to desorb because the adhesion between the membrane surface and particle was weakened by microbubbles. Therefore, it is considered possible to effectively control membrane fouling because of the increase in cleaning efficiency when applying microbubbles to wastewater reuse membrane processes.

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY

  • Hassan Yassin A.;Gutierrez-Torres C.C.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.763-778
    • /
    • 2006
  • Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and microbubbles) flows with various void fraction values are studied for a Reynolds number of 5128 based on the half height of the channel and bulk velocity. The state-of-the art Particle Tracking Velocimetry (PTV) measurement technique is used to measure the instantaneous full-field velocity components. Comparisons between turbulent statistical quantities with various values of local void fraction are presented to elucidate the influence of the microbubbles presence within the boundary layer. A decrease in the Reynolds stress distribution and turbulence production is obtained with the increase of microbubble concentration. The results obtained indicate a decorrelation of the streamwise and normal fluctuating velocities when microbubbles are injected within the boundary layer.

Microbubbles Increase Glucosinolate Contents of Watercress (Nasturtium officinale R. Br.) Grown in Hydroponic Cultivation (마이크로버블을 이용한 수경재배 물냉이의 글루코시놀레이트 함량 증대)

  • Bok, Gwonjeong;Choi, Jaeyun;Lee, Hyunjoo;Lee, Kwangya;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The effects of microbubbles on glucosinolate accumulation and growth of watercress (Nasturtium officinale R. Br.) were investigated. Watercress plant at the 4th mature leaf stage (2 weeks old) were exposed to microbubbles or non-microbubbles generated in an Otsuka-house nutrient solution for 3 weeks in a controlled environment culture room. Stem length of the watercress grown under the microbubbles was 41% shorter than that of the non-microbubbles, showing significantly different. However, shoot fresh and dry weights, root length, leaf length, leaf width, SPAD, and quentum yield of the watercress were not significantly different between treatments. Glucoiberin, glucobrassicin, gluconapin, gluconasturtiin of the watercress grown under microbubbles, excepted for 4-methoxyglucobrassicin, were significantly higher than those of the watercress grown in non-microbubbles. In addition, watercress grown under microbubbles for 3 weeks contained 85% (${\mu}mol/g$ DW) and 65% (${\mu}mol/plant$) more total glucosinolate, respectively. Results indicated that microbubbles generated in a deep flow technique hydroponics system could increase the accumulation of glucosinolate without growth reduction.

BEHAVIOR OF MICROBUBBLES IN ISOTROPIC TURBULENCE (등방성 난류에서의 마이크로버블 거동)

  • Shim, G.H.;Lee, S.G.;Lee, C.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.46-53
    • /
    • 2016
  • Direct numerical simulation is conducted to observe the behavior of microbubbles in isotropic turbulence. Navier-Stokes equation and the motion of equation for microbubbles are solved with periodic boundary condition in a cube domain. Vorticity contour, enstrophy ratio, relative reduction of bubble rise velocity, and the closest distance of particles are investigated for various Stokes numbers and gravity factors to understand clustering of microbubbles. Also, clustering due to the effect of the lift force is investigated.

A Removal Efficiency from Fundamental Characteristics of Microbubbles and Particles in Electroflotation (전해부상법에서 미세기포와 입자의 기초특성 연구를 통한 제거효율)

  • Dockko, Seok;Kim, Wontae;Han, Mooyoung;Kim, Mikyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • Recently, water treatment methods utilizing microbubbles such as DAF and EF are gaining interest and being studied. Current study is focused on the fundamental research of electroflotation by examining the characteristics of microbubbles and particles. The objects of this research consist of two things; (1) theoretical modeling of microbubble-particle collision, (2) the experimental investigation of removal efficiency of turbidity in electroflotation. From investigation, the mechanism of electroflotation can be explained not only by the characteristics of microbubbles and particles but also the chemistry of aluminum dissolved from aluminum electrode during the electroflotation experiment.

Simultaneous Measurement of Size and Velocity of Microbubbles inside Opaque Tube Using X-ray PTV Technique (X-ray PTV 기법을 이용한 불투명 튜브 내부의 미세기포의 크기 및 속도 동시 측정)

  • Kim, Seok;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • The microbubbles were used in various fields, such as turbulent control, drag reduction, material science and life science. The X-ray PTV using X-ray micro-imaging technique was employed to mea-sure the size and velocity of micro-bubbles moving in an opaque tube simultaneously. Micro-bubbles of $10{\sim}60{\mu}m$ diameter moving upward in an opaque tube (${\phi}$=2.7mm) were tested. Due to the different refractive indices of water and air, phase contrast X-ray images clearly show the exact size and shape of over-lapped microbubbles. In all of the working fluids tested (deionized water, tap water, 0.01 and 0.10M NaCl solutions), the measured terminal velocity of the microbubbles rising through the solution was proportional to the square of the bubble diameter. The rising velocity was increased with increasing mole concentration. The microbubble can be useful as contrast agent or tracer in life science and biology. The X-ray PTV technique should be able to extract useful information on the behavior of various bio/microscale fluid flows that are not amenable to analysis using conventional methods.

  • PDF

A Study on the Removal of Air Pollutants Using Oxidants and Microbubbles (산화제와 마이크로버블을 이용한 대기오염물질 제거)

  • Kyung-bo Ku;Hyuk-Ku Kwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • This study investigated the possibility of treating heavy metal pollutants existing in the air in addition to simultaneously removing NOx and SOx by injecting oxidizing and reducing agents into a scrubber into a microbubble device to create an eco-friendly method that does not generate secondary pollutants. Lead compound (Pb) was selected as the heavy metal substance in the air to be treated with microbubbles, and the removal efficiency was confirmed. By treating microbubbles by connecting them to a scrubber, it was confirmed that not only NOx and SOx but also heavy metal substances in the air were reduced, cost was reduced, and secondary environmental pollutants were not generated. Through this study, it was possible to simultaneously remove NOx, SOx, and heavy metals at low cost by applying an eco-friendly method, rather than the existing high-cost treatment method such as SCR. If oxidizing agent, reducing agent, and microbubbles are used appropriately, economical and efficient air pollution can be achieved. Since material processing was possible, it is expected to be helpful in the technological development of environmental prevention facilities.

Effect of the Application of Microbubbles and/or Catalyst on the Sludge Reduction and Organic matter of Livestock Wastewater (마이크로버블과 촉매 적용에 따른 가축분뇨의 슬러지와 유기오염물질 감량 효과)

  • Jang, Jae Kyung;Kim, Min Young;Sung, Je Hoon;Chang, In Seop;Kim, Tae Young;Kim, Hyun Woo;Kang, Young Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.558-562
    • /
    • 2015
  • This study was tested to evaluate the effect of the six different combinations of microbubble, catalyst, and air as oxidant on the sludge and organic matter reduction. When all of microbubbles and catalyst, and an oxidizing agent (under Conditions 1) such as air were used, the sludge was removed more than 99%, and TCOD and SCOD removal was 58% and 13%, respectively. This result was the highest value of six conditions. In the following order, the sludge reduction of the microbubbles with air (Condition 2) and catalyst with air (condition 4) was 95% and 93.1%, respectively. TCOD removal was found to be each 53% and 47%. When the microbubbles were used with oxidant like air, the removal of sludge and organic matter was high. All of these values were higher than that of using only microbubbles and catalyst without air. In the microbubbles and catalyst react under air supply condition, OH-radicals were generated in the reaction process. These OH-radicals in the reaction process decomposed the pollutants by the strong oxidizing power. In all conditions with air, the sludge reduction was high removal rate more than 93% and TCOD removal was over 47%.

Visualization of Microbubbles Affecting Drag Reduction in Turbulent Boundary Layer (마찰저항 감소에 영향을 주는 난류 경계층 내 미세기포(microbubble)의 가시화 연구)

  • Paik, Bu-Geun;Yim, Geun-Tae;Kim, Kwang-Soo;Kim, Kyoung-Youl;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.356-363
    • /
    • 2015
  • Microbubbles moving in the turbulent boundary layer are visualized and investigated in the point of frictional drag reduction. The turbulent boundary layer is formed beneath the surface of the 2-D flat plate located in the tunnel test section. The microbubble generator produces mean bubble diameter of 30 – 50 μm. To capture the micro-bubbles passing through the tiny measurement area of 5.6 mm2 to 200 mm2, the shadowgraphy system is employed appropriately to illuminate bubbles. The velocity field of bubbles reveals that Reynolds stress is reduced in the boundary layer by microbubbles’ activity. To understand the contribution of microbubbles to the drag reduction rate more, much smaller field-of-view is required to visualize the bubble behaviors and to find the 2-D void fraction in the inner boundary layer.

Disinfection by Ozone Microbubbles Can Cause Morphological Change of Fusarium oxysporum f. sp. melonis Spores

  • Tamaki, Masahiko;Kobayashi, Fumiyuki;Ikeura, Hiromi;Sato, Michio
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.335-340
    • /
    • 2018
  • To investigate the difference in the disinfectant efficiency of ozone microbubbles ($O_3MB$) and ozone millibubbles ($O_3MMB$), the morphological change of the treated Fusarium oxysporum f. sp. melonis spores was observed with scanning and transmission electron microscopies (SEM and TEM). The disinfectant efficiency of $O_3MB$ on F. oxysporum f. sp. melonis spores was greater than that of $O_3MMB$. On observation with SEM, it was revealed that morphological change of F. oxysporum f. sp. melonis spores was caused by $O_3MB$ and $O_3MMB$, and damage to the spore surfaces by $O_3MB$ occurred sooner than that by $O_3MMB$. On observation with TEM, it was furthermore confirmed that F. oxysporum f. sp. melonis spores treated with $O_3MB$ induced wavy deformation of cell membrane and the intracellular change different from that with $O_3MMB$. Therefore, the greater disinfection efficiency of $O_3MB$ was suggested to be caused due to the function of the MB in addition to the oxidative power of $O_3$.