DOI QR코드

DOI QR Code

Microbubbles Increase Glucosinolate Contents of Watercress (Nasturtium officinale R. Br.) Grown in Hydroponic Cultivation

마이크로버블을 이용한 수경재배 물냉이의 글루코시놀레이트 함량 증대

  • Bok, Gwonjeong (Department of Horticulture, Chungnam National University) ;
  • Choi, Jaeyun (Department of Horticulture, Chungnam National University) ;
  • Lee, Hyunjoo (Department of Horticulture, Chungnam National University) ;
  • Lee, Kwangya (Agricutural Drought Mitigation Center, Korea Rural Corporation (KRC)) ;
  • Park, Jongseok (Department of Horticulture, Chungnam National University)
  • 복권정 (충남대학교 농업생명과학대학 원예학과) ;
  • 최재윤 (충남대학교 농업생명과학대학 원예학과) ;
  • 이현주 (충남대학교 농업생명과학대학 원예학과) ;
  • 이광야 (한국농어촌공사 재난안전처 농업가뭄센터) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과)
  • Received : 2019.04.10
  • Accepted : 2019.04.16
  • Published : 2019.04.30

Abstract

The effects of microbubbles on glucosinolate accumulation and growth of watercress (Nasturtium officinale R. Br.) were investigated. Watercress plant at the 4th mature leaf stage (2 weeks old) were exposed to microbubbles or non-microbubbles generated in an Otsuka-house nutrient solution for 3 weeks in a controlled environment culture room. Stem length of the watercress grown under the microbubbles was 41% shorter than that of the non-microbubbles, showing significantly different. However, shoot fresh and dry weights, root length, leaf length, leaf width, SPAD, and quentum yield of the watercress were not significantly different between treatments. Glucoiberin, glucobrassicin, gluconapin, gluconasturtiin of the watercress grown under microbubbles, excepted for 4-methoxyglucobrassicin, were significantly higher than those of the watercress grown in non-microbubbles. In addition, watercress grown under microbubbles for 3 weeks contained 85% (${\mu}mol/g$ DW) and 65% (${\mu}mol/plant$) more total glucosinolate, respectively. Results indicated that microbubbles generated in a deep flow technique hydroponics system could increase the accumulation of glucosinolate without growth reduction.

본 실험은 물냉이 수경재배 시 양액 내 발생 시킨 마이크로버블이 물냉이의 생육과 glucosinolate 축적에 미치는 영향을 알아보기 위해 수행되었다. 본엽 4매의 물냉이 유묘(파종 2주 후)를 마이크로 버블과 비-마이크로버블을 발생시킨 오오츠카 배양액을 이용하여 환경조절룸에서 3주간 재배하였다. 물냉이 초장은 대조구처리가 마이크로버블처리보다 41% 증가하였으며, 유의적으로 높게 나타났다. 그러나, 지상부 생체중과 건물중, 근장, 엽장, 엽폭, SPAD, 량자수율값은 두처리간 유의적 차이는 나타나지 않았다. Glucosinolate 함량을 분석 결과 4-methoxygluco-brassicin을 제외한 glucoiberin, glucobrassicin, gluconapin, gluconasturtiin의 경우 마이크로버블 처리구가 대조구보다 유의적으로 높게 나타났으며, 물냉이 한주 당 총 glucosinolate 함량은 마이크로버블 처리구가 대조구 보다 $85%({\mu}mol/g\;DW)$$65%({\mu}mol/plant)$ 더 높게 나타났다. 본 연구 결과는 담액재배시 양액 내 마이크로버블이 물냉이의 glucosinolate 함량을 증가시킬 수 있을 것으로 나타났다.

Keywords

References

  1. Antonious, G.F., M.J. Kasperbauer, and M.E. Byers. 1996. Light reflected from colored mulches to growing turnip leaves affects glucosinolate and sugar contents of edible roots. Photochem. Photobiol. 64:605-610. https://doi.org/10.1111/j.1751-1097.1996.tb03112.x
  2. Atwell, B.J., and B.T. Steer. 1990. The effect of oxygen deficiency on uptake and distribution of nutrients in maize palnts. Plant and Soil. 122:1-8. https://doi.org/10.1007/BF02851904
  3. Caliskan, O., J. Radusiene, K.E. Temizel, Z. Staunis, C. Cirak, D. Kurt, and M.S. Odabas. 2017. The effects of salt and drought stress on phenolic accumulation in greenhousegrown Hypericum pruinatum. Ital. J. Agron. 12:271-275.
  4. Choi, J.Y., S.J. Kim, K.J. Bok, K.Y. Lee, and J.S. Park. 2018. Effect of different nutrient solution and light quality on growth and glucosinolate contents of watercress in hydroponics. Protected Horticulture and Plant Factory 27:371-380 (in Korean). https://doi.org/10.12791/KSBEC.2018.27.4.371
  5. Chun, C., and T. Takakura. 1994. Rate of root respiration of lettuce under various dissolved oxygen concentrations in hydroponics. Environmental Control in Biology. 32:125-135. https://doi.org/10.2525/ecb1963.32.125
  6. Cruz, R.M., M.C. Vieira, and C.L. Silva. 2008. Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innovative Food Science & Emerging Technologies 9:483-488. https://doi.org/10.1016/j.ifset.2007.10.005
  7. Di Noia, J. 2014. Defining Powerhouse Fruits and Vegetables: A Nutrient Density Approach. Preventing chronic disease. 11. 10.5888/pcd11.130390.
  8. Esfandiari, E., M.R. Shakiba, S.A. Mahboob, H. Alyari, and S. Shahabivand. 2008. The effect of water stress on the antioxidant content, protective enzyme activities, proline content and lipid peroxidation in wheat seedling. Pak. J. Biol. Sci. 11:1916-1922. https://doi.org/10.3923/pjbs.2008.1916.1922
  9. Frensch, J., and T.C. Hsiao. 1994. Transient responses of cell turgor and growth of maize roots as affected by changes in water potential. Plant Physiol. 104:247-254. https://doi.org/10.1104/pp.104.1.247
  10. Gerard, E.E., G. Holden, J.D. Cohen, and G. Gardner. 2006. The Effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agri. and Food Chem. 54:328-334. https://doi.org/10.1021/jf051857o
  11. Howard, B.H. 1975. Improved rooting of cuttings by diffusion of oxygen through the rooting medium. J. Hort. Sci. 50:173-174. https://doi.org/10.1080/00221589.1975.11514620
  12. Ikeura, H., H. Takahashi, F. Kobayashi, M. Sato, and M. Tamaki. 2017. Effect of different microbubble generation methods on growth of Japanese mustard spinach. J. Plant Nutrition. 40:115-127. https://doi.org/10.1080/01904167.2016.1201498
  13. ISO. 1992. Rapeseed: Determination of glucosinolates content- Part 1: Method using high performance liquid chromatography, 9167-1:1992 (pp.1-9). Geneva, Switzerland.
  14. Kopsell, D.A., T.C. Barickman, C.E. Sams, and J.S. McElroy. 2007. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agri. and Food Chem. 55:10628-10634. https://doi.org/10.1021/jf072793f
  15. Loughrin, J.H., and M.J. Kasperbauer. 2001. Light reflected from colored mulches affects aroma and phenol content of sweet basil (Ocimum basilicum L.) leaves. J. Agric. Food Chem. 49, 1331-1335. https://doi.org/10.1021/jf0012648
  16. Manion, L.K., D.E. Kopsell, D.A. Kopsell, C.E. Sams, and R.L. Rhkerd. 2014. Selenium fretilization influences biomass, elemental accumulations, and phytochemical concentrations in watercress. J. Plant Nutrition 37:327-342. https://doi.org/10.1080/01904167.2013.789110
  17. Mithen, R. 2001. Glucosinolates-Biochemistry, genetics and biological activity. Plant Growth Regul. 34:91-103. https://doi.org/10.1023/A:1013330819778
  18. Murshed, R., F. Lopez-Lauri, and H. Sallanon. 2013. Effect of water stress on antioxidant systems and oxidative parameters in fruits of tomato (Solanum lycopersicon L, cv. Microtom). Physiol. Mol. Biol. Pla. 19:363-378. https://doi.org/10.1007/s12298-013-0173-7
  19. Palaniswamy, U., R. McAvoy, and B. Bible. 1997. Supplemental lighting before harvest increase phenethyl isothiocyanate in watercress under 8-hour photoperiod. HortScience 31:222-223. https://doi.org/10.21273/HORTSCI.31.2.222
  20. Palaniswamy, U.R., R.J. McAvoy, B.B. Bible, and J.D. Stuart. 2003. Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R. Br.) leaves. J. Agric. Food Chem. 51:5504-5509. https://doi.org/10.1021/jf034268w
  21. Park, J.S., and K. Kurata. 2009. Application of microbubbles to hydroponics solution promotes lettuce growth. HortTechnolgy. 19:212-215. https://doi.org/10.21273/HORTSCI.19.1.212
  22. Park J.S., K. Ohashi, K. Kurata, and J.W. Lee. 2010. Promotion of lettuce growth by application of microbubbles in nutrient solution using different rates of electrical conductivity and under periodic intermittent generation in a deep flow technique culture system. Europ. J. Hort. Sci. 75:198-203.
  23. Park, K.W., and Y.S. Kim. 1998. Hydroponics in horticulture. pp.129-143. Academy books, Seoul, Korea.
  24. Park, S.K., and K.Y. Kim. 1991. Hydroponics. pp.132-156. Oseong Press, Seoul, Korea.
  25. Rodrigues, L., I. Silva, J. Poejo, A.T. Serra, A.A. Matias, A.L. Simplicio, M.R. Bronze, and Catarina M. M. Duarte. 2016. Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. The Royal Society of Chemistry. 6:30905-30918.
  26. Seo, T.C., H.C. Rhee, M.Y. Rho, K.L. Choi, H.K. Yun, and C.H. Chun. 2009. Effect of circulation cycle of nutrient solution on the dissolved oxygen concentration, and the growth and phytonutrient contents of leafy vegetables grown in DFT systems. J. Bio-Environment Control. 18:112-118 (in Korean).
  27. Son, J.E. 1999. Analyses of root-zone temperatures at various locations in NFT, DFT, and aggregate culture systems. J. Kor. Soi. Hort. Sci. 40:4-8.
  28. Syed Alwi, S.S., B.E. Cavell, U. Teland, M.E. Morris, B.M. Parry, and G. Packham. 2010. In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. British J. Nutrition 104:1288-1296. https://doi.org/10.1017/S0007114510002217
  29. Takahashi, M. 2005. ${\zeta}$ Potential of microbubbles in aqueous solutions: electrical properties of the gas−water interface. J. Phys. Chem. B. 109:21858-21864. https://doi.org/10.1021/jp0445270
  30. Takahashi, M. 2009. Base and technological application of micro-bubble and nanobubble. Materials Integration. 22:2-19 (in Japanese).
  31. Takahashi M., K. Chiba, and P. Li. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 111: 1343-1347. https://doi.org/10.1021/jp0669254
  32. Yoon, J.H., M. Abe-Suzuki, P. Eko, H. Tamai, S. Hanamitsu, and K. Nakane. 2006. Negative effects of hydroxyl radicalgenerating mists (simulated dew water) on the photosynthesis and growth of Japanes apricot seedlings (Prunus mume). Ecol Res. 21:117-125 https://doi.org/10.1007/s11284-005-0112-3
  33. Zahradnikova, H., and K. Petrikova. 2013. Nematocid effects of watercress (Nasturtium officinale R. Br.). Acta Univ Agric Silvic Mendelianae Brun. 61:233-236. https://doi.org/10.11118/actaun201361010233