• Title/Summary/Keyword: Microbial sensor

Search Result 41, Processing Time 0.032 seconds

Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

  • Kim, Eunjong;Lee, Dong-Hyun;Won, Seunggun;Ahn, Heekwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.753-758
    • /
    • 2016
  • Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg $O_2/g$ VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

Application of Electronic Nose in Discrimination of the Habitat for Special Agricultural Products (특용작물의 산지판별을 위한 전자코 응용)

  • Noh, Bong-Soo;Ko, Jae-Won;Kim, Sang-Yong;Kim, Su-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1051-1057
    • /
    • 1998
  • The discrimination of the agricultural origin, especially locally produced or imported from the products such as Ganoderma lucidum, sesame and arrowroot were investigated by using the electronic nose. Volatile components from these products were discriminated by twelve of conducting polymer sensors without any pretreatment. Pattern recognition was carried out. Multiple discriminant analysis showed the difference between imported agricultural product and locally produced ones such as Ganoderma lucidum, sesame and arrowroot. Unknown habitat of sesame and arrowroot could be identified by multiple discriminant analysis whether the imported or the locally produced one.

  • PDF

E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues

  • Choi, Bongsoo;Hyeon, Do Young;Lee, Juhun;Long, Terri A.;Hwang, Daehee;Hwang, Inhwan
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.294-305
    • /
    • 2022
  • E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Examining Synchronous Fluorescence Spectra of Dissolved Organic Matter for River BOD Prediction (하천수 BOD 예측을 위한 용존 자연유기물질의 synchronous 형광 스펙트럼 분석)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 2007
  • Fluorescence measurements of dissolved organic matter (DOM) have the superior advantages over other analysis tools for the applications to water quality management due to their rapid analysis. It is known that protein-like fluorescence characteristics are well corelated with microbial activities and biodegradable organic matter. In this study, potential biochemical oxygen demand (BOD) predictor were explored using the fluorescence peak intensities and/or the integrated fluorescence intensities derived from synchronous fluorescence spectra and the first derivative spectra of river samples. A preliminary study was conducted using a mixture of a river and a treated sewage to test the feasibility of the approach. It was demonstrated that the better BOD predictor can be derived from synchronous fluorescence spectra and the derivatives when the difference between the emission and the excitation wavelengths (${\Delta}{\gamma}$) was large. The efficacy of several selected fluorescence parameters was rivers in Seoul. The fluorescence parameters exhibited relatively good correlation coefficients with the BOD values, ranging from 0.59 to 0.90. Two parameters were suggested to be the optimum BOD predictors, which were a fluorescence peak at a wavelength of 283 nm from the synchronous spectrum at the ${\Delta}{\gamma}$ value of 75 nm, and the integrated fluorescence intensity of the first derivatives of the spectra at the wavelength range between 245 nm and 280 nm. Each BOD predictor showed the correlation coefficients of 0.89 and 0.90, respectively. It is expected that the results of this study will provide important information to develop a real-time efficient sensor for river BOD in the future.

Quorum-Sensing Mechanisms in Bacterial Communities and Their Potential Applications (세균의 의사 소통(Quorum-Sensing) 기구와 그 잠재적 응용성)

  • Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2006
  • Although microorganisms are, in fact, the most diverse and abundant type of organism on Earth, the ecological functions of microbial populations remains poorly understood. A variety of bacteria including marine Vibrios encounter numerous ecological challenges, such as UV light, predation, competition, and seasonal variations in seawater including pH, salinity, nutrient levels, temperature and so forth. In order to survive and proliferate under variable conditions, they have to develop elaborate means of communication to meet the challenges to which they are exposed. In bacteria, a range of biological functions have recently been found to be regulated by a population density-dependent cell-cell signaling mechanism known as quorum-sensing (QS). In other words, bacterial cells sense population density by monitoring the presence of self-produced extracellular autoinducers (AI). N-acylhomoserine lactone (AHL)-dependent quorum-sensing was first discovered in two luminescent marine bacteria, Vibrio fischeri and Vibrio harveyi. The LuxI/R system of V. fischeriis the paradigm of Gram-negative quorum-sensing systems. At high population density, the accumulated signalstrigger the expression of target genes and thereby initiate a new set of biological activities. Several QS systems have been identified so far. Among them, an AHL-dependent QS system has been found to control biofilm formation in several bacterial species, including Pseudomonas aeruginosa, Aeromonas hydrophila, Burkholderia cepacia, and Serratia liquefaciens. Bacterial biofilm is a structured community of bacterial cells enclosed in a self-produced polymeric matrix that adheres to an inert or living surface. Extracellular signal molecules have been implicated in biofilm formation. Agrobacterium tumefaciens strain NT1(traR, tra::lacZ749) and Chromobacterium violaceum strain CV026 are used as biosensors to detect AHL signals. Quorum sensing in lactic acid bacteria involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular regulator. In the nisin autoregulation process in Lactococcus lactis, the NisK protein acts as the sensor for nisin, and NisR protein as the response regulator activatingthe transcription of target genes. For control over growth and survival in bacterial communities, various strategies need to be developed by which receptors of the signal molecules are interfered with or the synthesis and release of the molecules is controlled. However, much is still unknown about the metabolic processes involved in such signal transduction and whether or not various foods and food ingredients may affect communication between spoilage or pathogenic bacteria. In five to ten years, we will be able to discover new signal molecules, some of which may have applications in food preservation to inhibit the growth of pathogens on foods.

Determination of Biogenic Amines using an Amperometric Biosensor with a Carbon Nanotube Electrode and Enzyme Reactor (Carbon Nanotube 전극과 효소반응기로 구성된 Amperometric Biosensor를 이용한 Biogenic Amines 검출)

  • Kim, Jong-Won;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.735-742
    • /
    • 2010
  • Biogenic amines are synthesized by microbial decarboxylation for the putrefaction or fermentation of foods containing protein. Although biogenic amines such as histamine, tyramine, and putrescine are required for many physiological functions in humans and animals, consumption of high amounts of biogenic amines can cause toxicological effects, including serious gastrointestinal, cutaneous, hemodynamic, and neurological symptoms. In this study, a novel amperometric biosensor wasdeveloped to detect biogenic amines. The biosensor consisted of a working electrode, a reference electrode, a counter electrode, an enzyme reactor with immobilized diamine oxidase, an injector, a peristaltic pump and a potentiostat. A working electrode was fabricated with a glassy carbon electrode (GCE) by coating functionalized multi-walled carbon nanotubes (MWCNT-$NH_2$) and by electrodepositing Prussian blue (PB) to enhance electrical conductivity. A sensor system with PB/MWCNT-$NH_2$/GCE showed linearity in the range of $0.5 {\mu}M{\sim}100 {\mu}M$ hydrogen peroxide with a detection limit of $0.5 {\mu}M$. The responses for tyramine, 2-phenylethylamine, and tryptamine were 95%, 75%, and 70% compared to that of histamine, respectively. These results imply that the biosensor system can be applied to the quantitative measurement of biogenic amines.

Development of Smart Packaging for Cream Type Cosmetic (크림 제형 화장품용 스마트 패키징 기술 개발)

  • Jeon, Sooyeon;Moon, Byounggeoun;Oh, Jaeyoung;Kang, Hosang;Jang, Geun;Lee, Kisung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • The degree of cosmetic's oxidation depends on the storage conditions and external conditions when using the product. The microbial contamination and oxygen exposure often results in the quality deterioration of cosmetics. In addition, the problem is that consumers often use cream-type cosmetics, which have short expiration period (6-12 months), even after the product is expired. When using the deteriorated cosmetics, it can be fatal to consumers' safety including some symptoms such as folliculitis, rashes, edema, and dermatitis. Therefore, it is necessary to develop sealed smart packaging for cosmetics to prevent the deterioration of cosmetics and improve consumer safety. In this study, we have developed smart packaging design for cosmetics that can measure the surrounding environment and expiration date for the cosmetics in the real time. In addition, the smart packaging includes sensor, which are linked to the mobile application. Users can find out the measurement results through the application. Also, the packaging design and functions were set up based on the survey results by the user and feasible model can be produced based on user choice. The measurement in the three environment has been done after manufactured the sensor, PCB, and mobile application. As a result, it works normally within a certain range under all three environmental conditions. It is believed that the information on expiration dates and storage environment can be efficiently delivered to the consumers through developed cosmetics smart packaging and applications. The development of UI/UX design for consumer is further studied. The UX/UI design of the application plays an essential role in achieving this goal through the commercialization the cosmetic products in the wide range.

The Implementation of a HACCP System through u-HACCP Application and the Verification of Microbial Quality Improvement in a Small Size Restaurant (소규모 외식업체용 IP-USN을 활용한 HACCP 시스템 적용 및 유효성 검증)

  • Lim, Tae-Hyeon;Choi, Jung-Hwa;Kang, Young-Jae;Kwak, Tong-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.464-477
    • /
    • 2013
  • There is a great need to develop a training program proven to change behavior and improve knowledge. The purpose of this study was to evaluate employee hygiene knowledge, hygiene practice, and cleanliness, before and after HACCP system implementation at one small-size restaurant. The efficiency of the system was analyzed using time-temperature control after implementation of u-HACCP$^{(R)}$. The employee hygiene knowledge and practices showed a significant improvement (p<0.05) after HACCP system implementation. In non-heating processes, such as seasoned lettuce, controlling the sanitation of the cooking facility and the chlorination of raw ingredients were identified as the significant CCP. Sanitizing was an important CCP because total bacteria were reduced 2~4 log CFU/g after implementation of HACCP. In bean sprouts, microbial levels decreased from 4.20 logCFU/g to 3.26 logCFU/g. There were significant correlations between hygiene knowledge, practice, and microbiological contamination. First, personnel hygiene had a significant correlation with 'total food hygiene knowledge' scores (p<0.05). Second, total food hygiene practice scores had a significant correlation (p<0.05) with improved microbiological qualities of lettuce salad. Third, concerning the assessment of microbiological quality after 1 month, there were significant (p<0.05) improvements in times of heating, and the washing and division process. On the other hand, after 2 months, microbiological was maintained, although only two categories (division process and kitchen floor) were improved. This study also investigated time-temperature control by using ubiquitous sensor networks (USN) consisting of an ubi reader (CCP thermometer), an ubi manager (tablet PC), and application software (HACCP monitoring system). The result of the temperature control before and after USN showed better thermal management (accuracy, efficiency, consistency of time control). Based on the results, strict time-temperature control could be an effective method to prevent foodborne illness.

Environmental Impact Assessment by Marine Cage Fish Farms: II. Estimation of Hydrogen Sulfide Oxidation Rate at $O_2$-H$_2$S Interface and Sulfate Reduction Rate in Anoxic Sediment Layer (해상 어류가두리양식장의 환경영향 평가: II. 가두리 양식장 퇴적물의 산소-황화수소 경계면에서 황화수소의 산화율 및 무산소 퇴적층에서 황산염 환원율 추정)

  • Lee, Jae-Seong;Kim, Kee-Hyun;Yu, Jun;Lee, Pil-Yong;Jung, Rae-Hong;Lee, Wong-Chan;Han, Jung-Jee;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.2
    • /
    • pp.64-72
    • /
    • 2004
  • We measured the vertical profiles of $O_2$, H$_2$S, and pH in sediment pore water beneath marine cage fish farms using a microsensor with a 25 ${\mu}{\textrm}{m}$ sensor tip size. The sediments are characterized by high organic material load. The oxygen consumption, hydrogen sulfide oxidation, and sulfate reduction rates in the microzonations (derived from the vertical distribution of chemical species concentration) were estimated by adapting a simple one-dimensional diffusion-reaction model. The oxygen penetration depth was 0.75 mm. The oxic microzonations were divided into upper and lower layers. Due to hydrogen sulfide oxidation within the oxic zone, the oxygen consumption rate was higher in the lower layer. The total oxygen consumption rate integrated with reaction zone depth was estimated to be 0.092 $\mu$mol $O_2$cm$^{-2}$ hr$^{-1}$ . The total hydrogen sulfide oxidation rate occurring within 0.7 mm thickness was estimated to be 0.030 $\mu$mo1 H$_2$S cm$^{-2}$ hr$^{-1}$ , and its turnover time in the oxic sediment layer was estimated to be about 2 minutes. This suggests that hydrogen sulfide was oxidized by both chemical and microbial processes in this zone. The molar consumption ratio, calculated to be 0.84, indicates that either other electron accepters exit on hydrogen sulfide oxidation, or elemental sulfur precipitation occurs near the $O_2$- H$_2$S interface. Total sulfate reduction flux was estimated to be 0.029 $\mu$mol cm$^{-2}$ hr$^{-1}$ , which accounted for more than 60% of total $O_2$ consumption flux. This result implied that the degradation of organic matter in the anoxic layer was larger than in the oxic layer.