• Title/Summary/Keyword: Microbial sensor

Search Result 41, Processing Time 0.025 seconds

Microbial BOD Sensor Using Hansenula anomala

  • Ihn Gwon-Shik;Park Kyung-Ho;Pek Un-Hua;Sohn Moo-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.145-148
    • /
    • 1992
  • A microbial sensor for BOD (Biochemical Oxygen Demand) measurement has been developed by immobilizing Hansenula anomala in a polyacrylamide gel. The optimum pH and temperature for BOD measurement using this sensor were pH 7.0 and $30^{\circ}C$, respectively. The response time was 30 min. A linear relationship was observed between the potential and the concentration below 44 ppm BOD. The potential was reproducible within ${\pm}9%$ of the relative error when a sample solution containing 20 mg/l of glucose and 20 mg/l of glutamic acid was employed. The effect of various compounds on BOD estimation was also examined. The potential output of the sensor was almost constant for 30 days. The relative error in BOD estimation was within ${\pm}10%$.

Comprehension of the Response Time in a Microbial BOD Sensor(II)

  • Sohn, Moo-Jeong;Hong, Dae-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.666-668
    • /
    • 1993
  • A microbial BOD sensor using immobilized Hansenula anomala was prepared for the estimation of BOD. The sensor voltage was increased with time and increasing concentration of GGA when it was inserted in a sample solution. A linear relationship was obtained with a correlation coefficient, 0.998 between the concentration of standard GGA solutions and dV/dt by using the initial change of voltage, in which the response time was 20 min. It could be concluded that the oxidation of GGA conformed to a first-order kinetics. Therefore, the good linearities were also observed at various times. This sensor showed the best linearity at 30 min.

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

An Energy Self-Sustainable Wireless Sensor System Based on a Microbial Fuel Cell (MFC) and Energy Harvester (EH) (미생물연료전지와 에너지 하베스팅에 기반한 에너지 자립형 무선 센서 시스템)

  • Yeo, Jeongjin;Park, Sojin;Lim, Jonghun;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.208-212
    • /
    • 2018
  • Microbial fuel cell (MFC) technology has been attractive since it can not only treat organic waste in an eco-friendly way by digesting it but also generate electricity by the unique metabolic process of microbes. However, it hasn't been employed in practical use until now because it is hard to integrate a small electricity up to an adequate amount of electric power and difficult to keep its bio-electric activity consistent. In this study, we combined an energy harvester with MFC (MFC-EH) to make the power-integration convenient and developed an energy self-sustainable wireless sensor system driven by a stable electric power produced by MFC-EH. Additionally, we build the low power application measuring data to be cast by the web in real-time so that it can be quickly and easily accessed through the internet. The proposed system could contribute to improvement of waste treatment and up-cycling technologies in near future.

Determination of Ethanol in Alcoholic Beverages by Alcohol Oxidase Sensor (Alcohol oxidase 효소센서를 이용한 알코올 음료 중의 에탄올 정량)

  • Lee, Ok-Kyung;Kim, Tai-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.266-269
    • /
    • 1995
  • In order to measure alcohol contents with speed and accuracy, alcohol sensor was prepared. Alcohol sensor was made by connecting with oxygen electrode after immobilized alcohol oxidase on nylon net with glutaraldehyde. Alcohol was determined by changing the rate of dissolved oxygen consumption using D.O. analyzer. Alcohol contents in alcoholic beverages were determined under the optimum conditions. The results were 0.71% in low-alcohol beverage, $4{\sim}5%$ in beers, 10.06% in wine, 16.12% in chungju, 25.71% in soju, and 6.18% in takju, respectively. The values by alcohol sensor showed an excellent correlation(r=0.999) with GC method.

  • PDF

Development of a COD(Chemical Oxygen Demand) Sensor Using an Electrode-surface Grinding Unit (전극표면 연마 유니트를 이용한 전기화학적 COD측정용 센서의 개발)

  • Yoon, Seok-Min;Choi, Chang-Ho;Park, Byung-Sun;Jin, Gil-Joo;Jeong, Bong-Geun;Hyun, Moon-Sik;Park, Jong-Man;Lee, Seung-Sun;Yi, Dong-Heui;Kim, Hyung-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.453-458
    • /
    • 2006
  • An electrochemical COD(Chemical Oxygen Demand) sensor using an electrode-surface finding unit has been constructed. The electrolyzing(oxidizing) action of copper on the organic species was used as the basis of the COD measuring sensor. Using a simple three electrode cell, organic species which has been activated by the catalytic action of copper is oxidized at a working electrode, poised at a positive potential. A novel modification of the above method allowed for extended use of the electrode, in which the action of the electrode is regenerated by an electrode-surface grinding unit. When samples obtained from a wastewater treatment factory were measured, a linear correlation($r^2=0.93$) between the measured value(EOD) and $COD_{Mn}$ of the samples was observed. Overall results indicated that the electrochemical sensor with grinding unit could be applied for continuous measurements of COD in practical fields.

Prediction of Fermentation Time of Korean Style Soybean Paste by using The Portable Electronic Nose (휴대용 전자코에 의한 된장의 숙성정도 예측)

  • Noh, Bong-Soo;Yang, Young-Min;Lee, Taik-Soo;Hong, Hyung-Ki;Kwon, Chul-Han;Sung, Yung-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.356-362
    • /
    • 1998
  • The study is to predict fermentation time of Korean style soybean paste by portable electronic nose that has six metal oxide sensors. Korean style soybean paste using Aspergillus oryzae was fermented at $15^{\circ}C,\;20^{\circ}C\;and\;25^{\circ}C$. The changes of sensitivity by electronic nose, amino nitrogen and reducing sugar were observed during fermentation. Sensitivities of six metal oxide sensor were decreased with increase of fermentation time while amino nitrogen was increased. Sensor #3 and #4 showed good correlation between sensitivities of the sensors and fermentation time $(r^2=0.71{\sim}0.95)$. And the good correlation between sensitivity by electronic nose and the produced amino nitrogen was shown until soybean paste was fermented. Portable electronic nose using metal oxide sensor (#3 and #4) could predict fermentation time of Korean style soybean paste.

  • PDF

Control of Microbial Shelf Life of Perishable Food by Real-Time Monitoring of $CO_2$ Concentration of its Package (변패성 식품의 포장 내 $CO_2$ 농도의 실시간적 측정에 의한 미생물적 저장수명 제어)

  • Kim, Hwan-Ki;An, Duck-Soon;Lee, Hyuk-Jae;Lee, Dong-Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.2
    • /
    • pp.33-37
    • /
    • 2011
  • Real time control logic of microbial shelf life of a perishable food, seasoned pork meat has been formulated which exploits monitoring of $CO_2$ concentration of the package. The potential of the proposed logic was examined for storage at dynamic temperature conditions. The start of increase in $CO_2$ production rate from the food or rate of package $CO_2$ concentration change was found to coincide with the point of microbial quality limit and could be used as an index of microbial shelf life determination. This also corresponded to lag time of $CO_2$ concentration change or time for the $CO_2$ concentration to reach a certain value. The application potential of the proposed logic was confirmed for a sensor system to measure on real time and transmit the $CO_2$ concentration wireless to the computer system.

  • PDF

Microbial Biosensors for Environmental and Food industrial Applications (환경오염과 식품공업 측정용 미생물 바이오센서)

  • 김의락
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.213-227
    • /
    • 2002
  • To date, the majority of biosensor technologies use binding components such as enzymes antibodies, nucleic acids and protein ligands. In contrast, the goal underlying the use of cells and tissues of animals and plants for a sensor system is to obtain systems capable of extracting information based on the biological activity, mechanisms of action and consequences of exposure to a chemical or biological agent of interest. These systems enable the interrogation of more complex biological response and offer the potential to gather higher information content from measuring physiologic and metabolic response. In these articles, same of the recent trends and applications of microbial biosensors in environmental monitoring and for use in food and fermentations have been reviewed. This endeavor presents many technological challenges to fabricate new microbial biosensors for other scientific field.

Basic Study for Harvesting Unused Energy based on Plant-Microbial Electrochemical Technology (식물-미생물전기화학 기반의 미활용 에너지 회수 기초 연구)

  • Yu, Jaecheul;Shin, Choon Hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.219-224
    • /
    • 2019
  • In this study, we evaluated the energy production from plant-microbial fuel cells using representative indoor plants, such as Scindapsus aureus and Clatha minor. The maximum power density of microbial fuel cell (MFC) using S. aureus ($3.36mW/m^2$) was about 2 times higher than that of the MFC using C. minor ($1.43mW/m^2$). It was confirmed that energy recovery is possible using plant-MFCs without fuel. However, further research is needed to improve the performance of plant-MFCs. Nevertheless, plant-MFCs have proved their potential as a novel energy source to overcome the limitations of the conventional renewable energy sources such as wind power and solar cells, and could be employed to a power source for the sensor in charge of the fourth industrial revolution.