This study was conducted to investigate the feeding effect of $bio-silverlite^{(R)}$ on growth performance, organ phenomenon and cecum microflora in broiler chicks. The $bio-silverlite^{(R)}$ was made by an ion exchange between illite and $silver(Ag^+)$. There were four treatment groups: negative control group(non-treatment), antibiotic supplement group (positive control), 0.5% $bio-silverlite^{(R)}$ supplment group and 1.5% $bio-silverlite^{(R)}$ supplement group. Total 200 birds was assigned for this five replication tests, allocating 10 birds into each treatment. Experimental diets were formulated on isocalories and isonitrogen for the whole experimental period. Body weight gain was higher in antibiotic supplementation (+C) and $bio-silverlite^{(R)}$ supplement groups(S 0.5% and 51.5%) than the negative control group(-C), and feed efficiency was significantly enhanced with increase of the level of $bio-silverlite^{(R)}$ supplement. The length of small intestine was longer in +C than in -C and $bio-silverlite^{(R)}$ supplement groups (P<0.05), and the weight of small intestine was proportional to the level of $bio-silverlite^{(R)}$ supplement. Crop weight was lower in $bio-silverlite^{(R)}$ supplement group than in -C and +C groups (P<0.05), and the cecum weight was heavier in $bio-silverlite^{(R)}$ supplementation group. Intestinal villi height was longer in 51.5% group at 3 weeks and 6 weeks of age than in -C and +C groups. With the respect of the formation of intestinal microflora, TBC and CBC was not affected by age and feed additive. However, the number of LAB was slightly higher in $bio-silverlite^{(R)}$ supplement group than in -C and +C groups.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.7
no.3
/
pp.181-194
/
2002
Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.
Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.
This study was conducted to investigate the effects of electrolyzed water (EW) and hot-air-drying with ultraviolet light (UV) to reduce coliform bacteria of Undaria pinnatifida (UP). The UP was washed in the order of 15% EW, tap water (TW), and distilled water (DW) under following conditions: 15% EW for 10 min (washing: 1 time), TW for 1 min, and DW for 10 min (washing: 5 times). Viable cells, coliform, and mold counts were at 102-103 CFU/g in untreated samples. After EW treatment, viable cells, coliform, and molds were not detected in whole samples or on the surface of UP. But, after hot-air-drying at 48°C for 48 h, the number of viable cells, coliform, and molds were 101-105 CFU/g. After hot-air-drying at 48°C for 48 h with UV (12-48 h), viable cells, coliform, and molds were not detected in whole samples or on the surface of UP. In respect of color value, there were no significant changes. In sensory evaluation, the UP with hot-air-drying with UV (12 h) had the highest score in overall preference among UV treatment groups. These results suggest that the treatments at 15% EW for 10 min and hot-air-drying at 48°C for 48 h with UV (12 h) were effective to reduce coliform bacteria of the dried Undaria pinnatifida.
Choi, Eun Ji;Chung, Young Bae;Kim, Jin Se;Chun, Ho Hyun
Journal of Food Hygiene and Safety
/
v.31
no.1
/
pp.42-50
/
2016
The effects of freezing and thawing conditions on microbiological quality and microstructure change of inoculated (Listeria monocytogenes and Campylobacter jejuni) and non-inoculated chicken breasts were investigated. Chicken breasts were frozen with air blast freezing (-20, -70, and $-150^{\circ}C$), ethanol ($-70^{\circ}C$) and liquid nitrogen ($-196^{\circ}C$) immersion freezing. There were no significant differences on the populations of L. monocytogenes inoculated with chicken breasts under different freezing conditions. However, air blast freezing ($-20^{\circ}C$) resulted in significant reductions for total aerobic bacteria and C. jejuni compared to the control and other freezing treatments. The frozen samples were thawed with (hot or cold) air blast, water immersion, and high pressure thawing at $4^{\circ}C$ and $25^{\circ}C$. the populations of total aerobic bacteria, and yeast and mold in the frozen chicken breast increased by 5.78 and 4.05 log CFU/g after water immersion thawing ($25^{\circ}C$) treatment. After five freeze-thaw cycles, the populations of total aerobic bacteria, yeast and mold, and C. jejuni were reduced by 0.29~1.40 log cycles, while there were no significant differences (P > 0.05) in the populations of L. monocytogenes depending on the freeze-thaw cycles. In addition, the histological examination of chicken breasts showed an increase in spacing between the muscle fiber and torn muscle fiber bundles as the number of freeze-thaw cycles increased. These results indicate that freezing and thawing processes could affect in the levels of microbial contamination and the histological change of chicken breasts.
Purpose: Microbial colonization of the intestine begins just after birth and development of the normal flora is a gradual process. The first bacteria colonizing the intestine in newborns are Staphylococcus, Enterobacteriaceae and Streptococcus. For several days after birth, the number of Bifidobacterium spp. increase. The aim of this study was to investigate the changes of microflora for seven days postnatally in neonatal stool. Methods: Fifteen neonates (breast : formula : mixed feeding 1 : 8 : 6, vaginal delivery : cesarean section 3 : 12) who were born at the Kangdong Sacred Heart Hospital, Hallym University were enrolled. First meconium and stools of postnatal 1-, 3-, and 7-day were innoculated. Blood agar plates for total aerobes, trypton bile X-glucuronide agar for E. coli, phenylethyl alcohol agar for gram positive anaerobes, MRS agar for Lactobacillus spp., bifidobacterium selective agar for Bifidobacterium spp. and cefoxitin-cycloserine-fructose agar for Clostridium difficile were used in the general incubator ($CO_2$ free incubator), $CO_2$ incubator or the anaerobic chamber for 48 or 72 hours at $37^{\circ}C$ and then colony forming units were counted. Results: No microflora was identified in the first meconium. Total aerobes, E. coli, and gram positive anaerobes were significantly increased with advancing postnatal days. In only one baby, Lactobacillus acidophilus was detected $2{\times}10^5CFU/g$ in the seven-day stool. Bifidobacterium spp. was detected in two babies. Clostridium difficile was not detected during the seven days. There were no significant differences in the bowel flora depending on the delivery pattern and feeding method. Conclusion: This study shows many changes in the intestinal normal flora in neonatal stool during seven days postnatally. If these findings are confirmed with larger studies, the data may be preliminary findings to support use of probiotics in neonates.
Escherichia coli O157:H7, Staphylococcus aureus and Salmonella enteritidis are food borne pathogens involved in food poisoning in numerous countries. This study aimed to obtain knowledges on the survival of Esc coli O157:H7, Sta aureus and Sal. enteritidis in the yoghurt added with water extract of Omija(Schizandra chinensis). The growth inhibition of Schizandra chinensis extract on the food borne pathogens were measured by total microbial count and effect of growth inhibition was correspondent to the concentration of Schizandra chinensis extract. The highest growth inhibition effect of Schizandra chinensis extract was shown on the Sta aureus followed by Sal. enteritidis and Esc. coli O157:H7. The number of surviving Esc. coli O157:H7 cell(3.55${\times}$10$\^$5/ CFU/mL) was decreased to 1.00${\times}$10$^1$∼3.00${\times}$10$^1$ CFU/mL after 24 hours incubation by the addition of 0.4∼l.0% of Schizandra chinensis extract in the yoghurt. And also the viable cell counts of surviving Sta. aureus cells (initial inoculum 1.24${\times}$10$\^$5/ CFU/mL) were decreased gradually to 4.00${\times}$10$^2$∼8.50${\times}$10$^2$ CFU/mL after 48 hours of incubation, but the viable cells of Sal. enteritidis were not detected after 24 hours of incubation. Growth of the food borne pathogens was strongly inhibited by the addition and incubation of Schizandra chinensis extract for 48 hours in the yoghurt.
Baechu kimchi without cuttlefish (control), baechu kimchi with cuttlefish (CK), cuttlefish baechu kimchi with yogurt (CK+Y), and cuttlefish baechu kimchi with vitamin C (CK+VC) were prepared, and the fermentation characteristics of the prepared kimchi samples were investigated during 28 days of fermentation at $4^{\circ}C$. The levels of moisture, crude lipid, and crude ash did not differ much among the samples, but the crude protein levels of CK, CK+Y, and CK+VC were greater than that of the control. The pH values of CK+Y and CK+VC slowly decreased compared with those of the control and CK during fermentation. The acidity increased sharply until 21 days then gradually increased thereafter. The total microbial counts achieved maximum levels at 21 days, and the kimchi to which yogurt and vitamin C were added showed values lower than that of the control. The number of Leuconostoc sp. in CK+Y and CK+VC was higher than that in the control. In our sensory evaluations, cuttlefish kimchi with yogurt or vitamin C scored highest in terms of texture, sour taste, ripened taste, and overall acceptability.
This study was carried to investigate the physicochemical and microbiological characteristics of seasonal salted-Kimchi cabbage order to provide basic data for optimal salting and storage condition of seasonal Kimchi cabbage. Generally, fall season samples had slightly higher pH and acidity value than the other seasonal salted Kimchi cabbage. The soluble solids content of spring, summer, fall and winter samples were 5.95%, 6.18%, 6.29% and 7.76%, respectively. The salt content of all the seasonal salted Kimchi cabbage samples were insignificant. The number of microbial bacteria in the summer samples were generally much more significant than spring and winter samples. There was no significant difference in the color of seasonal salted Kimchi cabbage. As for the texture properties, the firmest samples in the surface rupture test were the spring samples (force: 4.92 kg), and the hardest samples in the puncture test were the summer samples (force: 11.71 kg). In the correlation analysis of the quality characteristics of seasonal samples, the soluble solids content and hardness of the seasonal salted Kimchi cabbage was significantly correlated at 1% significance level. Also, in the principal component analysis, F1 and F2 were shown to explain 27.28% and 35.59% of the total variance (62.87%), respectively. The hierarchical cluster analysis of the quality characteristics of seasonal samples, the samples were divided into three groups: spring cabbage group, summer cabbage group and fall and winter cabbage group.
Park, Whan-Jun;Jwa, Mi-Kyung;Hyun, Sun-Hee;Lim, Sang-Bin;Song, Dae-Jin
Journal of the Korean Society of Food Science and Nutrition
/
v.35
no.7
/
pp.935-939
/
2006
Raw oyster (Crassostrea gigas) was inoculated with Vibrio parahaemolyticus and Escherichia coli, treated with high hydrostatic pressure and evaluated for microbial counts. Cell death of V. parahaemolyticus (Vp) increased with the increase of applied pressure. Vp starting inoculum of $3.8{\times}10^5\;CFU/mL$ was totally eliminated after exposure to 200 MPa for 10 min at $22^{\circ}C$ Viable cell of Vp decreased with the increase in treatment time and dropped below the detection limit with treament of 25 min at $22^{\circ}C/150\;MPa$. The number of Vp by treatment of $0^{\circ}C$ and $10^{\circ}C$ for 20 and 25 mon at 100 MPa, respectively. For E. coli, there was an initial lag up to 250 MPa gollowed by a rapid decline. Treatment at 325 MPa/$22^{\circ}C$ for 15 min caused 5-log reduction, while that at 375 MPa resulted in total reduction of starting inoculum of $4.0{\times}10^7\;CFU/mL$. Lower treatment temperature showed higher killing effect of E. coli at the same treatment pressure and time. Viable cell of E. coli decreased with the increase in treatment time, and 4-log reduction was achieved with treatment of 5 min at $10^{\circ}C$/350 MPa and then total reduction was achieved after treatment of 15 mon. Higher pressure, lower temperature and longer time were more effective in sterilizing V. parahaemolyticus and E. coli.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.