• 제목/요약/키워드: Microbial enzymes

검색결과 280건 처리시간 0.025초

Induction of Defense Related Enzymes and Pathogenesis Related Proteins in Pseudomonas fluorescens-Treated Chickpea in Response to Infection by Fusarium oxysporum f. sp. ciceri

  • Saikia, Ratul;Kumar, Rakesh;Singh, Tanuja;Srivastava, Alok K.;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • 제32권1호
    • /
    • pp.47-53
    • /
    • 2004
  • Pseudomonas fluorescens 1-94 induced systemic resistance in chickpea against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri by the synthesis and accumulation of phenolic compounds, phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) proteins(chitinase, $\beta$-1,3-glucanase and peroxidase). Time-course accumulation of these enzymes in chickpea plants inoculated with P. fluorescens was significantly(LSD, P=0.05) higher than control. Maximum activities of PR-proteins were recorded at 3 days after inoculation in all induced plants; thereafter, the activity decreased progressively. Five PR peroxidases detected in induced chickpea plants. Molecular mass of these purified peroxidases was 20, 29, 43, 66 and 97 kDa. Purified peroxidases showed antifungal activity against plant pathogenic fungi.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Replacement value of cottonseed meal for soybean meal in broiler chicken diets with or without microbial enzymes

  • Abdallh, Medani Eldow;Musigwa, Sosthene;Ahiwe, Emmanuel Uchenna;Chang'a, Edwin Peter;Al-Qahtani, Mohamed;Bhuiyan, Momenuzzaman;Iji, Paul Ade
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.159-173
    • /
    • 2020
  • A 4×2 factorial feeding trial was designed to investigate the effect of replacing soybean meal (SBM) with cottonseed meal (CSM) in wheat/sorghum/SBM-based diets fed with or without microbial enzymes in diets on the performance, visceral organ development and digestibility of nutrients of broiler chickens. Four graded levels of CSM - none (0%), low (4%, 8%, and 12%), medium (5%, 10%, and 15%), and high (6%, 12%, and 18%) of complete diets in starter, grower and finisher, respectively were fed with or without 100 mg/kg of xylanase and β-glucanase blend. Eight isocaloric and isonitrogenous diets were formulated using least-cost method to meet the nutrient specifications of Ross 308 male broilers. Each treatment was randomly assigned to 6 replicates (10 birds per replicate). There were CSM-enzyme interactions (p < 0.05) on feed intake (FI) and weight gain (WG) in the starter phase. Enzyme supplementation improved (p < 0.05) feed conversion ratio (FCR) in the grower and finisher phases, and increased WG in growing and finishing birds. CSM inclusion reduced (p < 0.05) the weight of gizzard and proventriculus in starter chicks, while these organs were bigger (p < 0.05) in the grower phase. The test ingredient decreased (p < 0.05) small intestinal weight in starter and grower birds. The CSM increased the absolute weight of thighs (p < 0.05) while breast meat was increased (p < 0.01) by enzyme addition. Starch digestibility was improved (p < 0.01) by enzyme inclusion and decreased (p < 0.01) by CSM. Enzyme supplementation improved (p < 0.05) the ileal digestibility of gross energy and protein. The results demonstrate that CSM can substitute up to 90% SBM in broiler chicken diets without compromising performance, and the nutritive value of CSM-containing diets can effectively be improved by enzyme supplementation.

Purification and Characterization of Six Fibrinolytic Serine-Proteases from Earthworm Lumbricus rubellus

  • Cho, Il-Hwan;Choi, Eui-Sung;Lim, Hun-Gil;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.199-205
    • /
    • 2004
  • The six lumbrokinase fractions (F1 to F6) with fibrinolytic activities were purified from earthworm Lumbricus rubellus lysates using the procedures of autolysis, ammonium sulfate fractionation, and column chromatography. The proteolytic activities on the casein substrate of the six iso-enzymes ranged from 11.3 to 167.5 unit/mg with the rank activity orders of F2 > F1 > F5 > F6 > F3 > F4. The fibrinolytic activities of the six fractions on the fibrin plates ranged from 20.8 to 207.2 unit/mg with rank orders of F6 > F2 > F5 > F3 > F1 > F4. The molecular weights of each iso-enzyme, as estimated by SDS-PAGE, were 24.6 (F1), 26.8 (F2), 28.2 (F3), 25.4 (F4), 33.1 (F5), and 33.0 kDa (F6), respectively. The plasminogen was activated into plasmin by the enzymes. The optimal temperature of the six iso-enzymes was $50^{\circ}C$, and the optimal pH ranged from pH 4-12. The four iso-enzymes (F1-F4) were completely inhibited by PMSF. The two enzymes (F5 and F6) were completely inhibited by aprotinin, TLCK, TPCK, SBTI, LBTI, and leupeptin. The N-terminal amino acid (aa) sequences of the first 20 to 22 residues of each fraction had high homology. All six isoenzymes had identical aa residues 2-3 and 13-15. The N-terminal 21-22 aa sequences of the F2, F3, and F4 isoenzymes were almost the same. The N-terminal aa sequences of F5 and F6 were identical.

Enzymes and Their Reaction Mechanisms in Dimethylsulfoniopropionate Cleavage and Biosynthesis of Dimethylsulfide by Marine Bacteria

  • Do, Hackwon;Hwang, Jisub;Lee, Sung Gu;Lee, Jun Hyuck
    • 한국해양생명과학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2021
  • In marine ecosystems, the biosynthesis and catabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria is critical to microbial survival and the ocean food chain. Furthermore, these processes also influence sulfur recycling and climate change. Recent studies using emerging genome sequencing data and extensive bioinformatics analysis have enabled us to identify new DMSP-related genes. Currently, seven bacterial DMSP lyases (DddD, DddP, DddY, DddK, DddL, DddQ and DddW), two acrylate degrading enzymes (DddA and DddC), and four demethylases (DmdA, DmdB, DmdC, and DmdD) have been identified and characterized in diverse marine bacteria. In this review, we focus on the biochemical properties of DMSP cleavage enzymes with special attention to DddD, DddA, and DddC pathways. These three enzymes function in the production of acetyl coenzyme A (CoA) and CO2 from DMSP. DddD is a DMSP lyase that converts DMSP to 3-hydroxypropionate with the release of dimethylsulfide. 3-Hydroxypropionate is then converted to malonate semialdehyde by DddA, an alcohol dehydrogenase. Then, DddC transforms malonate semialdehyde to acetyl-CoA and CO2 gas. DddC is a putative methylmalonate semialdehyde dehydrogenase that requires nicotinamide adenine dinucleotide and CoA cofactors. Here we review recent insights into the structural characteristics of these enzymes and the molecular events of DMSP degradation.

Functional Analyses and Application of Microbial Lactonohydrolases

  • Shimizu, Sakayu;Honda, Kohsuke;Kataoka, Michihiko
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권3호
    • /
    • pp.130-137
    • /
    • 2002
  • Microbial lactonohydrolases (intramolecular ester bond-hydrolyzing enzymes) with unique properties were found. The lactonohydrolase from Fusarium oxysporum catalyzes enantiose-lective hydrolysis of aldonate lactones and D-pantoyl lactone (D-PL). This enzyme is useful for the large-scale optical resolution of racemic PL. The Agrobacterium tumefaciens enzyme catalyzes asymmetric hydrolysis of PL, but the stereospecificity is opposite to that of the Fusarium enzyme. Dihydrocoumarin hydrolase (DHase) from Acinetobacter calcoaceticus is a bifunctional enzyme, which catalyzes not only hydrolysis of aromatic lactones but also bromination of monochlorodi-medon in the presence of H$_2$O$_2$and dihydrocoumarin. DHase also hydrolyzes several linear esters, and is useful for enantioselective hydrolysis of methyl DL-$\beta$-acetylthioisobutyrate and regioselective hydrolysis of methyl cetraxate.

Role of Unstable Phenanthrene-Degrading Pseudomonas species in Natural Attenuation of Phenanthrene-Contaminated Site

  • Prakash, Om;Lal, Rup
    • 한국미생물·생명공학회지
    • /
    • 제41권1호
    • /
    • pp.79-87
    • /
    • 2013
  • An unstable yet efficient phenanthrene-degrading bacterium strain Ph-3 was isolated from a petroleum-contaminated site at the Mathura Oil Refinery, India. The strain was identified as Pseudomonas sp. using a polyphasic approach. An analysis of the intermediates and assays of the degradative enzymes from a crude extract of phenanthrene-grown cells showed a novel and previously unreported pattern of 1, 2-dihydroxy naphthalene and salicylic acid production. While strain Ph-3 lost its phenanthrene- degrading potential during successive transfers on a rich medium, it maintained this trait in oligotrophic soil conditions under the stress of the pollutant and degraded phenanthrene efficiently in soil microcosms. Although the maintenance and in vitro study of unstable phenotypes are difficult and such strains are often missed during isolation, purification, and screening, these bacteria constitute a substantial fraction of the microbial community at contaminated sites and play an important role in pollutant degradation during biostimulation or monitored natural attenuation.

Impact of transgenic AFPCHI (Cucumis melo L. Silver Light) fungal resistance melon on soil microbial communities and enzyme activities

  • Bezirganoglu, Ismail;Uysal, Pinar
    • Journal of Plant Biotechnology
    • /
    • 제44권2호
    • /
    • pp.156-163
    • /
    • 2017
  • A greenhouse experiment was conducted for evaluation of ecological effects of transgenic melon plants in the rhizospheric soil in terms of soil properties, enzyme activities and microbial communities. Organic matter content of soil under transgenic melon plants was significantly higher than that of soil with non-transgenic melon plants. Significant variations were observed in organic matter, total P and K in soil cultivation with transgenic melon plants. There were also significant variations in the total numbers of colony forming units of fungi, actinomycetes and bacteria between soils treated with transgenic and non-transgenic melon plants. Transgenic and non-transgenic melon significantly enhanced several enzymes activities including urease, acid phosphatase, alkalin phosphatase, arysulphtase, ${\beta}$ glucosidase, dehydrogenase, protease and catalase. Soil polyphenoloxidase activity of $T_1$ transgenic melon was lower than that of $T_0$ transgenic melon and a non-melon plant during the same period. The first generation transgenic melon plants ($T_0$) showed significantly greater (p<0.05) effect on the activitiy of arylsulfatase, which increased from $2.540{\times}10^6CFU\;g^{-1}$ (control) to $19.860{\times}10^6CFU\;g^{-1}$ ($T_0$). These results clearly indicated that transgenic melon might change microbial communities, enzyme activities and soil chemical properties.

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.

Statistical patterns of lipase activities on the release of short-chain fatty acids in Cheddar cheese slurries

  • Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.6-19
    • /
    • 1989
  • Twenty-five commercial food grade and alalytical grade lipases were used to study the patterns of release of short-chain free fatty acids (FFA) from milk fat in cheese slurries. Principal component Analysis showed that there were four distinctive groups by the FFA ratios and five groups by the FFA concentrations. However, Average Linkage Cluster Analysis showed that the patterns of FFA released were dependent upon distance defined between groups of lipases. All the lipases tested with both statistical analysis had distinctive specificities in hydrolyzing short-chain FFA from milk fat. Lipases from ruminant-animal origins produced an extremely high ratio (>40%) of butyric acid and a low ratio (<26%) of capric acid to total short chain FFA. Lipases from porcinepancreas and some microbial origins showed balanced production in both bytyric and capric acid. However, most lipases from microbial origins released a high ratio of capric acid but similar ratios to other origin enzymes for short-chain free fatty acids. Ruminant-animal origin lipases produced short-chain FFA much higher in concentration than other lipases. Lipases from porcine pancreas as well as microbial origins showed different concentrations of the fatty acids. Ratios of short-chain FFA in each sample were not significantly changed during incubation periods (4 wk), whereas concentrations of the FFA increased considerably.

  • PDF