• Title/Summary/Keyword: Microbial enzymes

Search Result 280, Processing Time 0.025 seconds

Screening of Multifunctional Bacteria with Biocontrol and Biofertilizing Effects (식물병원진균의 생물적 방제 및 생물비료 활성을 갖는 다기능 세균의 탐색)

  • Kim, Young-Sook;Lee, Myeong-Seok;Yeom, Ji-Hee;Song, Ja-Gyeong;Lee, In-Kyoung;Yun, Bong-Sik
    • The Korean Journal of Mycology
    • /
    • v.39 no.2
    • /
    • pp.126-130
    • /
    • 2011
  • In the course of search for multifunctional microbial inoculants, three Bacillus strains (BS11-1,BS11-2,BS11-3) with biological control and biofertilizing effects were selected. In this study, their ability for solubilization of insoluble phosphate, production of indole-3-acetic acid (IAA), siderophore, and hydrolytic enzymes, and antagonism against phytopathogenic fungi were estimated. All strains produced IAA and siderophore depending on culture time and produced a visible clear zone on agar plate containing 0.5% carboxylmethyl cellulose as a carbon source. Also, these strains exhibited antifungal activities against phytopathogenic fungi, Botrytis cinerea, Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, and Phytophthora capsici.

Endochitosanase Produced by Bacillus sp. P2l as a Potential Source for the Production of Chitooligosaccharides. (키토산 올리고당의 제조용 소재로서 Bacillus sp. P2l 기원의 키토산분해효소)

  • 박노동;조유영;이현철;조종수;조도현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.345-351
    • /
    • 1998
  • In an effort to develop a potent system for the production of various dp (degree of polymerization) chitooligosaccharides, 32 enzymes or microbial systems were screened for chitosanolytic acitivity using chitosan as a substrate. The efficiency of each enzyme system was evaluated by the changes of turbidity and viscosity of chitosan solution, the amount of precipitate and the reducing sugar-producing activity in the enzymatic reaction mixture. Based on these assay methods for the chitosanase activity, Bacillus sp. P2l out of 32 screened systems showed highly potent endochitosanase, which was comparable with a commercially available enzyme (E7). Chitooligosaccharides of dp 3-7 were separated by TLC as major enzymatic reaction products, suggesting that the chitosanase from Bacillus sp. P2l be endo-splitting type.

  • PDF

Immobilization of Keratinolytic Metalloprotease from Chryseobacterium sp. Strain kr6 on Glutaraldehyde-Activated Chitosan

  • Silveira, Silvana T.;Gemelli, Sabrine;Segalin, Jeferson;Brandelli, Adriano
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.818-825
    • /
    • 2012
  • Keratinases are exciting keratin-degrading enzymes; however, there have been relatively few studies on their immobilization. A keratinolytic protease from Chryseobacterium sp. kr6 was purified and its partial sequence determined using mass spectrometry. No significant homology to other microbial peptides in the NCBI database was observed. Certain parameters for immobilization of the purified keratinase on chitosan beads were investigated. The production of the chitosan beads was optimized using factorial design and surface response techniques. The optimum chitosan bead production for protease immobilization was a 20 g/l chitosan solution in acetic acid [1.5% (v/v)], glutaraldehyde ranging from 34 g to 56 g/l, and an activation time between 6 and 10 h. Under these conditions, above 80% of the enzyme was immobilized on the support. The behavior of the keratinase loading on the chitosan beads surface was well described using the Langmuir model. The maximum capacity of the support ($q_m$) and dissociation constant ($K_d$) were estimated as 58.8 U/g and 0.245 U/ml, respectively. The thermal stability of the immobilized enzyme was also improved around 2-fold, when compared with that of the free enzyme, after 30 min at $65^{\circ}C$. In addition, the activity of the immobilized enzyme remained at 63.4% after it was reused five times. Thus, the immobilized enzyme exhibited an improved thermal stability and remained active after several uses.

Effective Microwell Plate-Based Screening Method for Microbes Producing Cellulase and Xylanase and Its Application

  • Kim, Jennifer Jooyoun;Kwon, Young-Kyung;Kim, Ji Hyung;Heo, Soo-Jin;Lee, Youngdeuk;Lee, Su-Jin;Shim, Won-Bo;Jung, Won-Kyo;Hyun, Jung-Ho;Kwon, Kae Kyoung;Kang, Do-Hyung;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1559-1565
    • /
    • 2014
  • Cellulase and xylanase are main hydrolysis enzymes for the degradation of cellulosic and hemicellulosic biomass, respectively. In this study, our aim was to develop and test the efficacy of a rapid, high-throughput method to screen hydrolytic-enzyme-producing microbes. To accomplish this, we modified the 3,5-dinitrosalicylic acid (DNS) method for microwell plate-based screening. Targeted microbial samples were initially cultured on agar plates with both cellulose and xylan as substrates. Then, isolated colonies were subcultured in broth media containing yeast extract and either cellulose or xylan. The supernatants of the culture broth were tested with our modified DNS screening method in a 96-microwell plate, with a $200{\mu}l$ total reaction volume. In addition, the stability and reliability of glucose and xylose standards, which were used to determine the enzymatic activity, were studied at $100^{\circ}C$ for different time intervals in a dry oven. It was concluded that the minimum incubation time required for stable color development of the standard solution is 20 min. With this technique, we successfully screened 21 and 31 cellulase- and xylanase-producing strains, respectively, in a single experimental trial. Among the identified strains, 19 showed both cellulose and xylan hydrolyzing activities. These microbes can be applied to bioethanol production from cellulosic and hemicellulosic biomass.

Optimal Production of N-acetyl-$\beta$-D-glucosamine Using Chitinolytic Enzyme (Chitinolytic Enzyme을 이용한 N-acetyl-$\beta$-D-glucosamine의 최적생산)

  • 이천우;이은영장상목김광
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.696-703
    • /
    • 1996
  • The bacterium Serratia marcescens QM Bl466 produces selectively large amount of chitinolytic enzymes(about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acelyl-${\beta}$-D-glucosamine(NAG) is performed by a system consisting of two hydrolases : chitinase and chilobiase. Objectives of this study included optimization of a microbial host by using chitin particles for chitinase/chitobiase production and secretion and also development of batch fermentation system for high cell density cultivalion of S. marcescens QM B1466. Also, the influence of chitin source and carboxymethyl(CM) chitin on chitinase/chitobiase production and NAG production was investigated. When carboxymethyl chitin was substituted for colloidal and practical grade chitin, the chitinase activity was increased about 7∼10U/mL. In this case, the ratio of chitinase/chitobiase was 30.03U/3.44U(9:1). The highest amounts of NAG(3.0g/L) was obtained.

  • PDF

Effect of Extract of Fermented Dropwort on Intestinal Bacteria and Enzymes In Vitro (미나리발효액이 장내 유해세균 및 유익균의 In Vitro 생육 및 효소활성에 미치는 영향)

  • Lee, Kyung-Ae;Kim, Moo-Sung;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.358-361
    • /
    • 2008
  • Effect of extract of fermented dropwort (Oenanthe stolonifera) on growth of intestinal harmful/useful bacteria and enzyme activity were investigated in vitro. The extract showed strong inhibition on harmful microbes including Vibrio and Salmonella, but mild inhibition on Bifidobacterium longum in both agar plate and liquid cultivation. Minimum inhibitory concentration (MIC) value of B. longum was the highest among tested microbes. Inhibition effect of fermented extract on harmful microbes increased according to fermentation period. Extract of fermented dropwort showed inhibitory effects on activity of microbial ${\beta}$-glucuronidase and tryptophanase. The inhibitory effects were also proportional to fermentation period. As consequence, it is assumed that the uptake of fermented dropwort might be useful for human intestinal health.

Synthesis and Properties of 5-Aminosalicyl-L-Aspartic Acid and 5-Aminosalicyl-L-glutamic Acid as Colon-Specific Prodrugs of 5-Aminosalicylic Acid (5-아미노살리실산의 결장표적성 프로드럭 : 5-아미노살리실-L-글루타민산과 5-아미노살리실-L-아스파틸산의 합성 및 성상)

  • Jung, Yun-Jin;Lee, Jeoung-Soo;Kim, Hak-Hyun;Kim, Young-Mi;Kim, Dae-Duk;Han, Suk-Kyu
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.5-11
    • /
    • 1998
  • 5-Aminosalicyl-L-aspartic acid (5-ASA-Asp) and 5-aminosalicyl-L-glutamic acid (5-ASA-Glu) were synthesized as new colon-specific prodrugs of 5-aminosalicylic acid (5-ASA), their apparent partition coefficients, and the extent of conversion in the homogenates of tissue and contents of various G.I. Tract segments of rats were evaluated. These prodrugs were stable in the homogenate of tissue and contents of stomach, proximal small intestine (PSI) or distal small intestine (DSI). Release of 5-ASA from 5-ASA-Asp after incubation with the cecal and colonic contents for 8hrs at $37^{\circ}C$ was 18%, and 8%, respectively. No significant conversion of prodrug was observed in the cecal and colonic contents of rats pretreated with kanamycin sulfate, which indicated that microbial enzymes were responsible for the cleavage of these prodrugs.

  • PDF

Food Characteristics of Olive Flounder Paralichthys olivaceus Roe Concentrates Prepared Using a Cook-dried Process (가열-건조처리로 제조한 넙치(Paralichthys olivaceus) 알 농축물의 식품 특성)

  • Kwon, In Sang;Yoon, In Seong;Kang, Sang in;Kim, Jin-Soo;Kim, Hyeung Jun;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.791-801
    • /
    • 2022
  • Boil-dried concentrates (BDC) and steam-dried concentrates (SDC) were prepared from highly nutritious olive flounder Paralichthys olivaceus roes (OFR) as seafood processing by-products and their nutritional characteristics were investigated. Although SDS-PAGE profiles of the BDC and SDC proteins were similar to each other, it was observed that three of the five OFR protein bands in the 50-100 kDa range had disappeared. We also detected significant differences in the Hunter's color of the two concentrates in terms of color difference (𝚫E) and whiteness. The recovery amounts of BDC and SDC prepared from 100 g of OFR were 18.6 and 21.4 g, respectively, with respective protein contents of 67.7% and 68.9%. The main amino acids of OFR and concentrate proteins were valine, leucine, lysine, arginine, aspartic acid, glutamic acid and alanine, whereas major minerals were sulfur, potassium, sodium and phosphorus, the amounts of which in concentrates had been significantly reduced. We established that by sterilizing, inactivating endogenous enzymes, and inhibiting microbial growth, the cook-dried process contributes to enhancing the concentration and storage stability of nutrients by reducing water activity, volume, and weight. Accordingly, we suggest that concentrates (BDC and SDC) prepared from OFR have considerable potential as nutritionally fortified materials.

Analysis and Characterization of Glutathione Peroxidases in an Environmental Microbiome and Isolated Bacterial Microorganisms

  • Yun-Juan Bao;Qi Zhou;Xuejing Yu;Xiaolan Yu;Francis J. Castellino
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.299-309
    • /
    • 2023
  • Glutathione peroxidases (Gpx) are a group of antioxidant enzymes that protect cells or tissues against damage from reactive oxygen species (ROS). The Gpx proteins identified in mammals exhibit high catalytic activity toward glutathione (GSH). In contrast, a variety of non-mammalian Gpx proteins from diverse organisms, including fungi, plants, insects, and rodent parasites, show specificity for thioredoxin (TRX) rather than GSH and are designated as TRX-dependent peroxiredoxins. However, the study of the properties of Gpx in the environmental microbiome or isolated bacteria is limited. In this study, we analyzed the Gpx sequences, identified the characteristics of sequences and structures, and found that the environmental microbiome Gpx proteins should be classified as TRX-dependent, Gpx-like peroxiredoxins. This classification is based on the following three items of evidence: i) the conservation of the peroxidatic Cys residue; ii) the existence and conservation of the resolving Cys residue that forms the disulfide bond with the peroxidatic cysteine; and iii) the absence of dimeric and tetrameric interface domains. The conservation/divergence pattern of all known bacterial Gpx-like proteins in public databases shows that they share common characteristics with that from the environmental microbiome and are also TRX-dependent. Moreover, phylogenetic analysis shows that the bacterial Gpx-like proteins exhibit a star-like radiating phylogenetic structure forming a highly diverse genetic pool of TRX-dependent, Gpx-like peroxidases.

Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken

  • Min-Jin Kwak;Dong-Jin Ha;Min Young Park;Ju Young Eor;Kwang-Youn Whang;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.398-411
    • /
    • 2024
  • Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.